基于深度神经网络的儿童ASD分类

Ashima Sindhu Mohanty , Priyadarsan Parida , Krishna Chandra Patra
{"title":"基于深度神经网络的儿童ASD分类","authors":"Ashima Sindhu Mohanty ,&nbsp;Priyadarsan Parida ,&nbsp;Krishna Chandra Patra","doi":"10.1016/j.gltp.2021.08.042","DOIUrl":null,"url":null,"abstract":"<div><p>The recognition of a person in society is based on the behaviour and socio-communicative skills. But some neurodevelopment illness like Autism Spectrum disorder (ASD) highly influences the behaviour and communication skill of an individual. Individuals with such illness need early detection for minimizing its effect. The ASD diagnosis is done by a mobile-based screening app to extract information from all individuals irrespective of age. The information is stored in publicly accessible authenticated research UCI Machine Learning (ML) repository and Kaggle. The proposed approach in this paper is investigated up on child data set gathered from UCI repository. The analysis is done for two distinct cases: complete and missing data via standardization by Mean Standard deviation approach followed by dimension reduction using Diffusion Mapping and finally classification of ASD class utilising Deep Neural Network Prediction and Classification (DNNPC) model. The performance of DNNPC classifier model is validated by distinct performance parameters.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"2 2","pages":"Pages 461-466"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gltp.2021.08.042","citationCount":"3","resultStr":"{\"title\":\"ASD classification for children using deep neural network\",\"authors\":\"Ashima Sindhu Mohanty ,&nbsp;Priyadarsan Parida ,&nbsp;Krishna Chandra Patra\",\"doi\":\"10.1016/j.gltp.2021.08.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recognition of a person in society is based on the behaviour and socio-communicative skills. But some neurodevelopment illness like Autism Spectrum disorder (ASD) highly influences the behaviour and communication skill of an individual. Individuals with such illness need early detection for minimizing its effect. The ASD diagnosis is done by a mobile-based screening app to extract information from all individuals irrespective of age. The information is stored in publicly accessible authenticated research UCI Machine Learning (ML) repository and Kaggle. The proposed approach in this paper is investigated up on child data set gathered from UCI repository. The analysis is done for two distinct cases: complete and missing data via standardization by Mean Standard deviation approach followed by dimension reduction using Diffusion Mapping and finally classification of ASD class utilising Deep Neural Network Prediction and Classification (DNNPC) model. The performance of DNNPC classifier model is validated by distinct performance parameters.</p></div>\",\"PeriodicalId\":100588,\"journal\":{\"name\":\"Global Transitions Proceedings\",\"volume\":\"2 2\",\"pages\":\"Pages 461-466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gltp.2021.08.042\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Transitions Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666285X21000704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X21000704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社会对一个人的认可是基于他的行为和社会交际能力。但一些神经发育疾病,如自闭症谱系障碍(ASD),会严重影响个体的行为和沟通技巧。患有这种疾病的人需要及早发现,以尽量减少其影响。自闭症谱系障碍的诊断是通过一个基于手机的筛查应用程序来完成的,该应用程序从所有个体中提取信息,而不考虑年龄。这些信息存储在公开访问的认证研究UCI机器学习(ML)存储库和Kaggle中。在UCI存储库中收集子数据集的基础上,对本文提出的方法进行了研究。对两种不同的情况进行了分析:通过平均标准差方法进行标准化的完整和缺失数据,然后使用扩散映射进行降维,最后使用深度神经网络预测和分类(DNNPC)模型进行ASD类别分类。采用不同的性能参数对DNNPC分类器模型的性能进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ASD classification for children using deep neural network

The recognition of a person in society is based on the behaviour and socio-communicative skills. But some neurodevelopment illness like Autism Spectrum disorder (ASD) highly influences the behaviour and communication skill of an individual. Individuals with such illness need early detection for minimizing its effect. The ASD diagnosis is done by a mobile-based screening app to extract information from all individuals irrespective of age. The information is stored in publicly accessible authenticated research UCI Machine Learning (ML) repository and Kaggle. The proposed approach in this paper is investigated up on child data set gathered from UCI repository. The analysis is done for two distinct cases: complete and missing data via standardization by Mean Standard deviation approach followed by dimension reduction using Diffusion Mapping and finally classification of ASD class utilising Deep Neural Network Prediction and Classification (DNNPC) model. The performance of DNNPC classifier model is validated by distinct performance parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Energy Efficient Secure Routing Protocol for Mobile Ad-Hoc Network Grid interconnected H-bridge multilevel inverter for renewable power applications using repeating units and level boosting network Power Generation Using Ocean Waves: A Review Development of an Arabic HQAS-based ASAG to consider an ignored knowledge in misspelled multiple words short answers Smartphone assist deep neural network to detect the citrus diseases in Agri-informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1