基于图神经网络的无小区大规模MIMO移动边缘计算任务卸载策略

Shiwei Li, Fangqing Tan, Qiang Liu
{"title":"基于图神经网络的无小区大规模MIMO移动边缘计算任务卸载策略","authors":"Shiwei Li, Fangqing Tan, Qiang Liu","doi":"10.1109/BMSB58369.2023.10211224","DOIUrl":null,"url":null,"abstract":"Combining cell-free massive multiple-input multiple-output (CF-mMIMO) and mobile edge computing (MEC) facilitates the processing of compute-intensive and latency-sensitive tasks in the distributed IoT. For MEC-enabled CF-mMIMO system, this paper designs a task offloading strategy for local computing and multi-access points (APs) collaboration. Under energy constraints, we aim to minimize the latency of computing offloading. According to the different data size of each user and the service of APs, the graph neural network method is adopted to deal with the link prediction between the user and APs.","PeriodicalId":13080,"journal":{"name":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","volume":"194 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Edge Computing Tasking Offloading Strategy in Cell-Free Massive MIMO with Graph Neural Network\",\"authors\":\"Shiwei Li, Fangqing Tan, Qiang Liu\",\"doi\":\"10.1109/BMSB58369.2023.10211224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining cell-free massive multiple-input multiple-output (CF-mMIMO) and mobile edge computing (MEC) facilitates the processing of compute-intensive and latency-sensitive tasks in the distributed IoT. For MEC-enabled CF-mMIMO system, this paper designs a task offloading strategy for local computing and multi-access points (APs) collaboration. Under energy constraints, we aim to minimize the latency of computing offloading. According to the different data size of each user and the service of APs, the graph neural network method is adopted to deal with the link prediction between the user and APs.\",\"PeriodicalId\":13080,\"journal\":{\"name\":\"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting\",\"volume\":\"194 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMSB58369.2023.10211224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMSB58369.2023.10211224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合无单元的大规模多输入多输出(CF-mMIMO)和移动边缘计算(MEC),可以促进分布式物联网中计算密集型和延迟敏感任务的处理。针对支持mec的CF-mMIMO系统,设计了一种本地计算和多接入点(ap)协作的任务卸载策略。在能量限制下,我们的目标是最小化计算卸载的延迟。根据每个用户的数据量和ap服务的不同,采用图神经网络方法处理用户与ap之间的链路预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile Edge Computing Tasking Offloading Strategy in Cell-Free Massive MIMO with Graph Neural Network
Combining cell-free massive multiple-input multiple-output (CF-mMIMO) and mobile edge computing (MEC) facilitates the processing of compute-intensive and latency-sensitive tasks in the distributed IoT. For MEC-enabled CF-mMIMO system, this paper designs a task offloading strategy for local computing and multi-access points (APs) collaboration. Under energy constraints, we aim to minimize the latency of computing offloading. According to the different data size of each user and the service of APs, the graph neural network method is adopted to deal with the link prediction between the user and APs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Task Offloading Based on Scalable DAG in Cell-Free HetMEC Networks Resource Pre-caching Strategy of Digital Twin System Based on Hierarchical MEC Architecture Research on key technologies of audiovisual media microservices and industry applications A Closed-loop Operation and Maintenance Architecture based on Digital Twin for Electric Power Communication Networks Edge Fusion of Intelligent Industrial Park Based on MatrixOne and Pravega
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1