批量问题的库存效率算法

Sang-Un Lee
{"title":"批量问题的库存效率算法","authors":"Sang-Un Lee","doi":"10.7236/JIIBC.2021.21.2.169","DOIUrl":null,"url":null,"abstract":"결과 모든 데이터에 대해 최적 해를 찾았다. Abstract The lot sizing problem(LSP) is a hard problem that classified as non-deterministic(NP)-complete because of the polynomial-time optimal solution algorithm is unknown yet. The well-known W-W algorithm can be obtain the solution within polynomial-time, but this algorithm is a very complex, therefore the heuristic approximated S-M algorithm is suggested. This paper suggests  linear-time complexity algorithm that can be find not the approximated but optimal solution. This algorithm determines the lot size  ∗ in period  to the sum of the demands of interval   , the period   is determined by the holding cost will not exceed setup cost of   period.","PeriodicalId":22795,"journal":{"name":"The Journal of the Institute of Webcasting, Internet and Telecommunication","volume":"35 1","pages":"169-175"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stock Efficiency Algorithm for Lot Sizing Problem\",\"authors\":\"Sang-Un Lee\",\"doi\":\"10.7236/JIIBC.2021.21.2.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"결과 모든 데이터에 대해 최적 해를 찾았다. Abstract The lot sizing problem(LSP) is a hard problem that classified as non-deterministic(NP)-complete because of the polynomial-time optimal solution algorithm is unknown yet. The well-known W-W algorithm can be obtain the solution within polynomial-time, but this algorithm is a very complex, therefore the heuristic approximated S-M algorithm is suggested. This paper suggests  linear-time complexity algorithm that can be find not the approximated but optimal solution. This algorithm determines the lot size  ∗ in period  to the sum of the demands of interval   , the period   is determined by the holding cost will not exceed setup cost of   period.\",\"PeriodicalId\":22795,\"journal\":{\"name\":\"The Journal of the Institute of Webcasting, Internet and Telecommunication\",\"volume\":\"35 1\",\"pages\":\"169-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Institute of Webcasting, Internet and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7236/JIIBC.2021.21.2.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Webcasting, Internet and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/JIIBC.2021.21.2.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大数据:大数据:大数据:大数据摘要批量划分问题(LSP)是一类难解问题,由于其多项式时间最优解算法尚不明确,因此被归为非确定性完全问题。众所周知的W-W算法可以在多项式时间内得到解,但该算法非常复杂,因此提出了启发式近似S-M算法。本文提出了一种能找到最优解而非近似解的线性时间复杂度算法——。该算法确定了在周期内的批量大小*以需求的总和为区间,周期是由持有成本不超过设置成本所决定的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stock Efficiency Algorithm for Lot Sizing Problem
결과 모든 데이터에 대해 최적 해를 찾았다. Abstract The lot sizing problem(LSP) is a hard problem that classified as non-deterministic(NP)-complete because of the polynomial-time optimal solution algorithm is unknown yet. The well-known W-W algorithm can be obtain the solution within polynomial-time, but this algorithm is a very complex, therefore the heuristic approximated S-M algorithm is suggested. This paper suggests  linear-time complexity algorithm that can be find not the approximated but optimal solution. This algorithm determines the lot size  ∗ in period  to the sum of the demands of interval   , the period   is determined by the holding cost will not exceed setup cost of   period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Apple Detection Algorithm based on an Improved SSD Effect of Investment Evaluation Criteria of Public ICT Projects on Business Success Lightweight of ONNX using Quantization-based Model Compression A study on Recognition of Inpatient Room Acoustic Pattern for Hospital safety An emprical analysis on the effect of OTT company's content investment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1