对基于校验和的软件抗篡改的通用攻击

Glenn Wurster, P. V. Oorschot, Anil Somayaji
{"title":"对基于校验和的软件抗篡改的通用攻击","authors":"Glenn Wurster, P. V. Oorschot, Anil Somayaji","doi":"10.1109/SP.2005.2","DOIUrl":null,"url":null,"abstract":"Self-checking software tamper resistance mechanisms employing checksums, including advanced systems as recently proposed by Chang and Atallah (2002) and Horne et al. (2002) have been promoted as an alternative to other software integrity verification techniques. Appealing aspects include the promise of being able to verify the integrity of software independent of the external support environment, as well as the ability to automatically integrate checksumming code during program compilation or linking. In this paper we show that the rich functionality of many modern processors, including UltraSparc and x86-compatible processors, facilitates automated attacks which defeat such checksumming by self-checking programs.","PeriodicalId":6366,"journal":{"name":"2005 IEEE Symposium on Security and Privacy (S&P'05)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"A generic attack on checksumming-based software tamper resistance\",\"authors\":\"Glenn Wurster, P. V. Oorschot, Anil Somayaji\",\"doi\":\"10.1109/SP.2005.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-checking software tamper resistance mechanisms employing checksums, including advanced systems as recently proposed by Chang and Atallah (2002) and Horne et al. (2002) have been promoted as an alternative to other software integrity verification techniques. Appealing aspects include the promise of being able to verify the integrity of software independent of the external support environment, as well as the ability to automatically integrate checksumming code during program compilation or linking. In this paper we show that the rich functionality of many modern processors, including UltraSparc and x86-compatible processors, facilitates automated attacks which defeat such checksumming by self-checking programs.\",\"PeriodicalId\":6366,\"journal\":{\"name\":\"2005 IEEE Symposium on Security and Privacy (S&P'05)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Security and Privacy (S&P'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP.2005.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Security and Privacy (S&P'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2005.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

摘要

采用校验和的自检软件防篡改机制,包括Chang和Atallah(2002)以及Horne等人(2002)最近提出的先进系统,已被推广为其他软件完整性验证技术的替代方案。吸引人的方面包括能够独立于外部支持环境验证软件的完整性,以及在程序编译或链接期间自动集成校验和代码的能力。在本文中,我们展示了许多现代处理器(包括UltraSparc和x86兼容处理器)的丰富功能,促进了通过自检程序击败校验和的自动攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generic attack on checksumming-based software tamper resistance
Self-checking software tamper resistance mechanisms employing checksums, including advanced systems as recently proposed by Chang and Atallah (2002) and Horne et al. (2002) have been promoted as an alternative to other software integrity verification techniques. Appealing aspects include the promise of being able to verify the integrity of software independent of the external support environment, as well as the ability to automatically integrate checksumming code during program compilation or linking. In this paper we show that the rich functionality of many modern processors, including UltraSparc and x86-compatible processors, facilitates automated attacks which defeat such checksumming by self-checking programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seeing-is-believing: using camera phones for human-verifiable authentication BIND: a fine-grained attestation service for secure distributed systems On safety in discretionary access control Language-based generation and evaluation of NIDS signatures A generic attack on checksumming-based software tamper resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1