{"title":"下一个在哪里?","authors":"J. Lavelle","doi":"10.4324/9781315735535-12","DOIUrl":null,"url":null,"abstract":"Single-molecule sensitive super-resolution microscopy techniques such as dSTORM and PALM provide microscopic images with subdiffraction spatial resolution. This enables new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level [1]. Because of their intrinsic single-molecule sensitivity they allow quantitative access to cellular structures, for example, how proteins are distributed and how they interact with other biomolecules. Ultimately, it is even possible to determine proteins numbers in cells and the number of subunits in a protein complex. Thus, they can pave the way toward a better understanding of how cellular function is encoded at the molecular level. Here, we demonstrate how single-molecule localization microscopy can be used advantageously for subdiffraction-resolution fluorescence imaging, discuss current limitations and point out future prospects. For example, super-resolution imaging of protein distributions in larger intact tissue volumes with preserved fine structure remains so far challenging. We demonstrate that 3D-dSTORM in the red spectral range with a high NA water immersion lens and optimized staining procedures can be used to map protein distributions with ~ 20x20x60 nm resolution in cryosections with a thickness of 25 μm. We recorded thousands of neuronal subcompartments aberration-free in volumes of up to 28x30x14 μm in 90 min. Using highly specific antibodies we measured protein distributions and clusters with distinct size, number and density in different brain regions. In addition, we developed a new multicolor localization microscopy method that enables quantitative multidimensional dSTORM. We show how single-molecule sensitive super-resolution microscopy methods can be used successfully in clinical day-to-day diagnostics of cancer diseases to improve next generation personalized immunotherapies.","PeriodicalId":90525,"journal":{"name":"In mind : the inquisitive mind, social psychology for you","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Where next?\",\"authors\":\"J. Lavelle\",\"doi\":\"10.4324/9781315735535-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-molecule sensitive super-resolution microscopy techniques such as dSTORM and PALM provide microscopic images with subdiffraction spatial resolution. This enables new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level [1]. Because of their intrinsic single-molecule sensitivity they allow quantitative access to cellular structures, for example, how proteins are distributed and how they interact with other biomolecules. Ultimately, it is even possible to determine proteins numbers in cells and the number of subunits in a protein complex. Thus, they can pave the way toward a better understanding of how cellular function is encoded at the molecular level. Here, we demonstrate how single-molecule localization microscopy can be used advantageously for subdiffraction-resolution fluorescence imaging, discuss current limitations and point out future prospects. For example, super-resolution imaging of protein distributions in larger intact tissue volumes with preserved fine structure remains so far challenging. We demonstrate that 3D-dSTORM in the red spectral range with a high NA water immersion lens and optimized staining procedures can be used to map protein distributions with ~ 20x20x60 nm resolution in cryosections with a thickness of 25 μm. We recorded thousands of neuronal subcompartments aberration-free in volumes of up to 28x30x14 μm in 90 min. Using highly specific antibodies we measured protein distributions and clusters with distinct size, number and density in different brain regions. In addition, we developed a new multicolor localization microscopy method that enables quantitative multidimensional dSTORM. We show how single-molecule sensitive super-resolution microscopy methods can be used successfully in clinical day-to-day diagnostics of cancer diseases to improve next generation personalized immunotherapies.\",\"PeriodicalId\":90525,\"journal\":{\"name\":\"In mind : the inquisitive mind, social psychology for you\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In mind : the inquisitive mind, social psychology for you\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4324/9781315735535-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In mind : the inquisitive mind, social psychology for you","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781315735535-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单分子敏感超分辨显微技术,如dSTORM和PALM,提供亚衍射空间分辨率的显微图像。这使得对蛋白质在细胞背景下如何组织的新见解成为可能,其空间分辨率几乎接近分子水平[1]。由于它们固有的单分子敏感性,它们可以定量地进入细胞结构,例如,蛋白质如何分布以及它们如何与其他生物分子相互作用。最终,甚至有可能确定细胞中的蛋白质数量和蛋白质复合物中的亚基数量。因此,它们可以为更好地理解细胞功能如何在分子水平上编码铺平道路。在这里,我们展示了单分子定位显微镜如何有利地用于亚衍射分辨率荧光成像,讨论了当前的局限性,并指出了未来的前景。例如,到目前为止,在保存了精细结构的较大完整组织体积中进行蛋白质分布的超分辨率成像仍然具有挑战性。我们证明,在高NA水浸透镜和优化染色程序的红色光谱范围内,3D-dSTORM可以用于绘制厚度为25 μm的冷冻切片中分辨率为~ 20x20x60 nm的蛋白质分布。我们在90分钟内以高达28x30x14 μm的体积记录了数千个无畸变的神经元亚室。使用高度特异性的抗体,我们测量了不同大脑区域中具有不同大小,数量和密度的蛋白质分布和簇。此外,我们开发了一种新的多色定位显微镜方法,可以实现定量的多维dSTORM。我们展示了单分子敏感超分辨率显微镜方法如何成功地用于癌症疾病的临床日常诊断,以改善下一代个性化免疫疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Where next?
Single-molecule sensitive super-resolution microscopy techniques such as dSTORM and PALM provide microscopic images with subdiffraction spatial resolution. This enables new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level [1]. Because of their intrinsic single-molecule sensitivity they allow quantitative access to cellular structures, for example, how proteins are distributed and how they interact with other biomolecules. Ultimately, it is even possible to determine proteins numbers in cells and the number of subunits in a protein complex. Thus, they can pave the way toward a better understanding of how cellular function is encoded at the molecular level. Here, we demonstrate how single-molecule localization microscopy can be used advantageously for subdiffraction-resolution fluorescence imaging, discuss current limitations and point out future prospects. For example, super-resolution imaging of protein distributions in larger intact tissue volumes with preserved fine structure remains so far challenging. We demonstrate that 3D-dSTORM in the red spectral range with a high NA water immersion lens and optimized staining procedures can be used to map protein distributions with ~ 20x20x60 nm resolution in cryosections with a thickness of 25 μm. We recorded thousands of neuronal subcompartments aberration-free in volumes of up to 28x30x14 μm in 90 min. Using highly specific antibodies we measured protein distributions and clusters with distinct size, number and density in different brain regions. In addition, we developed a new multicolor localization microscopy method that enables quantitative multidimensional dSTORM. We show how single-molecule sensitive super-resolution microscopy methods can be used successfully in clinical day-to-day diagnostics of cancer diseases to improve next generation personalized immunotherapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
E-Klausuren für die Hochschule: Zeit der Veränderung Folk psychologies A two-systems account of mindreading Mirror neurons Constructivism and the theory of mind
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1