医学超声图像中组织吸收参数幂律前因子和幂律指数的估计

IF 0.8 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Tm-Technisches Messen Pub Date : 2023-06-21 DOI:10.1515/teme-2023-0090
D. Brandner, B. Zagar
{"title":"医学超声图像中组织吸收参数幂律前因子和幂律指数的估计","authors":"D. Brandner, B. Zagar","doi":"10.1515/teme-2023-0090","DOIUrl":null,"url":null,"abstract":"Abstract Ultrasound is a mechanical wave propagating in tissue which is influenced in its propagation behavior by the locally prevailing acousto-mechanical conditions. By suitable processing of the back-scattered signals received by the ultrasound transducer, tissue parameters such as local bulk modulus, mass density, speed of sound, isotropic scattering coefficient, and also the locally acting tissue absorption can be inferred. A discipline that has received increasing attention in the medical ultrasonic imaging discipline and its scientific publications in recent years is quantitative ultrasound (QUS) which tries to estimate with great accuracy these local acting tissue parameters. In this paper we analyze different algorithms for estimation of high spatial resolution tissue absorption parameters. On the one hand, there is a simple absorption estimator based on the evaluation of the quotient of the power density spectra calculated for different depth regions (spectral-log-difference estimator), which, however, assumes a linearly with frequency increasing absorption, this is contrasted with an estimator which also allows to estimate a polynomial increase of the absorption with frequency (method-of-moments estimator). Since a closed-form solution cannot be given for this, a maximum-likelihood estimator for which there is always an estimate that can be computed numerically efficiently is developed. The results, tissue attenuation, are presented as a color-coded overlay on conventional B-mode ultrasound images showing only morphology.","PeriodicalId":56086,"journal":{"name":"Tm-Technisches Messen","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimators of tissue absorption parameters power-law prefactor and power-law exponent from medical ultrasonic images\",\"authors\":\"D. Brandner, B. Zagar\",\"doi\":\"10.1515/teme-2023-0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ultrasound is a mechanical wave propagating in tissue which is influenced in its propagation behavior by the locally prevailing acousto-mechanical conditions. By suitable processing of the back-scattered signals received by the ultrasound transducer, tissue parameters such as local bulk modulus, mass density, speed of sound, isotropic scattering coefficient, and also the locally acting tissue absorption can be inferred. A discipline that has received increasing attention in the medical ultrasonic imaging discipline and its scientific publications in recent years is quantitative ultrasound (QUS) which tries to estimate with great accuracy these local acting tissue parameters. In this paper we analyze different algorithms for estimation of high spatial resolution tissue absorption parameters. On the one hand, there is a simple absorption estimator based on the evaluation of the quotient of the power density spectra calculated for different depth regions (spectral-log-difference estimator), which, however, assumes a linearly with frequency increasing absorption, this is contrasted with an estimator which also allows to estimate a polynomial increase of the absorption with frequency (method-of-moments estimator). Since a closed-form solution cannot be given for this, a maximum-likelihood estimator for which there is always an estimate that can be computed numerically efficiently is developed. The results, tissue attenuation, are presented as a color-coded overlay on conventional B-mode ultrasound images showing only morphology.\",\"PeriodicalId\":56086,\"journal\":{\"name\":\"Tm-Technisches Messen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tm-Technisches Messen\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/teme-2023-0090\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tm-Technisches Messen","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/teme-2023-0090","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

摘要超声是一种在组织中传播的机械波,其传播行为受局部流行声力学条件的影响。通过对超声换能器接收到的背散射信号进行适当的处理,可以推断出局部体积模量、质量密度、声速、各向同性散射系数以及局部作用的组织吸收等组织参数。定量超声(quantitative ultrasound, QUS)是近年来在医学超声成像学科及其科学出版物中受到越来越多关注的一门学科,它试图准确地估计这些局部作用的组织参数。本文分析了高空间分辨率组织吸收参数估计的不同算法。一方面,有一种基于对不同深度区域计算的功率密度谱商评估的简单吸收估计器(谱对数差估计器),然而,它假设吸收随频率增加呈线性增长,这与一种也允许估计吸收随频率增加呈多项式增长的估计器(矩量法估计器)形成对比。由于不能给出闭型解,因此开发了一个最大似然估计量,该估计量总有一个可以有效地进行数值计算的估计。结果,组织衰减,呈现为颜色编码覆盖在传统的b型超声图像只显示形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimators of tissue absorption parameters power-law prefactor and power-law exponent from medical ultrasonic images
Abstract Ultrasound is a mechanical wave propagating in tissue which is influenced in its propagation behavior by the locally prevailing acousto-mechanical conditions. By suitable processing of the back-scattered signals received by the ultrasound transducer, tissue parameters such as local bulk modulus, mass density, speed of sound, isotropic scattering coefficient, and also the locally acting tissue absorption can be inferred. A discipline that has received increasing attention in the medical ultrasonic imaging discipline and its scientific publications in recent years is quantitative ultrasound (QUS) which tries to estimate with great accuracy these local acting tissue parameters. In this paper we analyze different algorithms for estimation of high spatial resolution tissue absorption parameters. On the one hand, there is a simple absorption estimator based on the evaluation of the quotient of the power density spectra calculated for different depth regions (spectral-log-difference estimator), which, however, assumes a linearly with frequency increasing absorption, this is contrasted with an estimator which also allows to estimate a polynomial increase of the absorption with frequency (method-of-moments estimator). Since a closed-form solution cannot be given for this, a maximum-likelihood estimator for which there is always an estimate that can be computed numerically efficiently is developed. The results, tissue attenuation, are presented as a color-coded overlay on conventional B-mode ultrasound images showing only morphology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tm-Technisches Messen
Tm-Technisches Messen 工程技术-仪器仪表
CiteScore
1.70
自引率
20.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: The journal promotes dialogue between the developers of application-oriented sensors, measurement systems, and measurement methods and the manufacturers and measurement technologists who use them. Topics The manufacture and characteristics of new sensors for measurement technology in the industrial sector New measurement methods Hardware and software based processing and analysis of measurement signals to obtain measurement values The outcomes of employing new measurement systems and methods.
期刊最新文献
Miniaturisation of label free surface analytics by Whispering Gallery Modes Number of samples to use in estimating sinewave amplitude in the presence of noise Frontmatter 16th Dresden Sensor Symposium Integrating metrological principles into the Internet of Things: a digital maturity model for sensor network metrology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1