炉渣计算器:炉渣和冶金性能的框架

Sergey Bublik, S. Gouttebroze, T. Coudert, M. Tangstad, K. Einarsrud
{"title":"炉渣计算器:炉渣和冶金性能的框架","authors":"Sergey Bublik, S. Gouttebroze, T. Coudert, M. Tangstad, K. Einarsrud","doi":"10.2139/ssrn.3926702","DOIUrl":null,"url":null,"abstract":"Physical properties of multi-component slag systems are of great importance for metallurgical processes, thereby many studies have shown that properties such as density, surface tension or viscosity can be predicted using previously developed models. However, nowadays there is no such framework integrating published models for calculation of slag properties and allowing for user-friendly post-processing of data. In this study, a web-based application for calculation of slag properties both in solid and liquid state was developed in Python. The web-application predicts density, heat capacity, surface tension and other properties from temperature and slag composition provided by the user and subsequently the user has the possibility to interact with and visualize data, and compare results from various models. The architecture of the web-application was designed to address interoperability and data security concepts. In addition, the modularity of the web-application was based on standardized web architectural styles to facilitate the addition of new models or functions in the future. The current work is aimed at demonstrating the key functionality of the application and initiating discussion and further collaboration for its development.","PeriodicalId":11974,"journal":{"name":"EngRN: Engineering Design Process (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SlagCalculator: A Framework for Slag and Metallurgical Properties\",\"authors\":\"Sergey Bublik, S. Gouttebroze, T. Coudert, M. Tangstad, K. Einarsrud\",\"doi\":\"10.2139/ssrn.3926702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical properties of multi-component slag systems are of great importance for metallurgical processes, thereby many studies have shown that properties such as density, surface tension or viscosity can be predicted using previously developed models. However, nowadays there is no such framework integrating published models for calculation of slag properties and allowing for user-friendly post-processing of data. In this study, a web-based application for calculation of slag properties both in solid and liquid state was developed in Python. The web-application predicts density, heat capacity, surface tension and other properties from temperature and slag composition provided by the user and subsequently the user has the possibility to interact with and visualize data, and compare results from various models. The architecture of the web-application was designed to address interoperability and data security concepts. In addition, the modularity of the web-application was based on standardized web architectural styles to facilitate the addition of new models or functions in the future. The current work is aimed at demonstrating the key functionality of the application and initiating discussion and further collaboration for its development.\",\"PeriodicalId\":11974,\"journal\":{\"name\":\"EngRN: Engineering Design Process (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Engineering Design Process (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3926702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Engineering Design Process (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3926702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多组分渣系的物理性质对冶金过程非常重要,因此许多研究表明,可以使用先前开发的模型预测密度、表面张力或粘度等性质。然而,目前还没有这样的框架整合已发表的计算模型,并允许用户友好的数据后处理。在本研究中,使用Python开发了一个基于web的计算矿渣固态和液态性质的应用程序。该网络应用程序根据用户提供的温度和炉渣成分预测密度、热容量、表面张力和其他性能,随后用户可以与数据进行交互和可视化,并比较各种模型的结果。web应用程序的体系结构旨在解决互操作性和数据安全问题。此外,web应用程序的模块化基于标准化的web架构风格,以方便将来添加新的模型或功能。当前的工作旨在展示应用程序的关键功能,并为其开发发起讨论和进一步的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SlagCalculator: A Framework for Slag and Metallurgical Properties
Physical properties of multi-component slag systems are of great importance for metallurgical processes, thereby many studies have shown that properties such as density, surface tension or viscosity can be predicted using previously developed models. However, nowadays there is no such framework integrating published models for calculation of slag properties and allowing for user-friendly post-processing of data. In this study, a web-based application for calculation of slag properties both in solid and liquid state was developed in Python. The web-application predicts density, heat capacity, surface tension and other properties from temperature and slag composition provided by the user and subsequently the user has the possibility to interact with and visualize data, and compare results from various models. The architecture of the web-application was designed to address interoperability and data security concepts. In addition, the modularity of the web-application was based on standardized web architectural styles to facilitate the addition of new models or functions in the future. The current work is aimed at demonstrating the key functionality of the application and initiating discussion and further collaboration for its development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen Diffusion in Vacancy-Rich Ferrite and Austenite, from First Principles to Applications Characterization of Impurities and Inclusions in Ferrochrome Alloy and Their Effects on the Inclusion Characteristics in Stainless Steels Kinetics of Silicon Production by Aluminothermic Reduction of Silica Using Aluminum and Aluminum Dross as Reductants The Properties of Carbon Blends in Submerged arc Furnaces SlagCalculator: A Framework for Slag and Metallurgical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1