{"title":"稀疏随机图中的大三角填充与图扎猜想","authors":"Patrick Bennett, A. Dudek, Shira Zerbib","doi":"10.1017/S0963548320000115","DOIUrl":null,"url":null,"abstract":"Abstract The triangle packing number v(G) of a graph G is the maximum size of a set of edge-disjoint triangles in G. Tuza conjectured that in any graph G there exists a set of at most 2v(G) edges intersecting every triangle in G. We show that Tuza’s conjecture holds in the random graph G = G(n, m), when m ⩽ 0.2403n3/2 or m ⩾ 2.1243n3/2. This is done by analysing a greedy algorithm for finding large triangle packings in random graphs.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"37 1","pages":"757 - 779"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Large triangle packings and Tuza’s conjecture in sparse random graphs\",\"authors\":\"Patrick Bennett, A. Dudek, Shira Zerbib\",\"doi\":\"10.1017/S0963548320000115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The triangle packing number v(G) of a graph G is the maximum size of a set of edge-disjoint triangles in G. Tuza conjectured that in any graph G there exists a set of at most 2v(G) edges intersecting every triangle in G. We show that Tuza’s conjecture holds in the random graph G = G(n, m), when m ⩽ 0.2403n3/2 or m ⩾ 2.1243n3/2. This is done by analysing a greedy algorithm for finding large triangle packings in random graphs.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"37 1\",\"pages\":\"757 - 779\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large triangle packings and Tuza’s conjecture in sparse random graphs
Abstract The triangle packing number v(G) of a graph G is the maximum size of a set of edge-disjoint triangles in G. Tuza conjectured that in any graph G there exists a set of at most 2v(G) edges intersecting every triangle in G. We show that Tuza’s conjecture holds in the random graph G = G(n, m), when m ⩽ 0.2403n3/2 or m ⩾ 2.1243n3/2. This is done by analysing a greedy algorithm for finding large triangle packings in random graphs.