使用红外摄像机和反射带在昼夜亮度下进行实时跌落检测

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Ambient Intelligence and Smart Environments Pub Date : 2021-07-21 DOI:10.3233/AIS-210605
E. Ramanujam, S. Padmavathi
{"title":"使用红外摄像机和反射带在昼夜亮度下进行实时跌落检测","authors":"E. Ramanujam, S. Padmavathi","doi":"10.3233/AIS-210605","DOIUrl":null,"url":null,"abstract":"Falls are the leading cause of injuries and death in elderly individuals who live alone at home. The core service of assistive living technology is to monitor elders’ activities through wearable devices, ambient sensors, and vision systems. Vision systems are among the best solutions, as their implementation and maintenance costs are the lowest. However, current vision systems are limited in their ability to handle cluttered environments, occlusion, illumination changes throughout the day, and monitoring without illumination. To overcome these issues, this paper proposes a 24/7 monitoring system for elders that uses retroreflective tape fabricated as part of conventional clothing, monitored through low-cost infrared (IR) cameras fixed in the living environment. IR camera records video even when there are changes in illumination or zero luminance. For classification among clutter and occlusion, the tape is considered as a blob instead of a human silhouette; the orientation angle, fitted through ellipse modeling, of the blob in each frame allows classification that detects falls without pretrained data. System performance was tested using subjects in various age groups and “fall” or “non-fall” were detected with 99.01% accuracy.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"12 1","pages":"285-300"},"PeriodicalIF":1.8000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Real time fall detection using infrared cameras and reflective tapes under day/night luminance\",\"authors\":\"E. Ramanujam, S. Padmavathi\",\"doi\":\"10.3233/AIS-210605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Falls are the leading cause of injuries and death in elderly individuals who live alone at home. The core service of assistive living technology is to monitor elders’ activities through wearable devices, ambient sensors, and vision systems. Vision systems are among the best solutions, as their implementation and maintenance costs are the lowest. However, current vision systems are limited in their ability to handle cluttered environments, occlusion, illumination changes throughout the day, and monitoring without illumination. To overcome these issues, this paper proposes a 24/7 monitoring system for elders that uses retroreflective tape fabricated as part of conventional clothing, monitored through low-cost infrared (IR) cameras fixed in the living environment. IR camera records video even when there are changes in illumination or zero luminance. For classification among clutter and occlusion, the tape is considered as a blob instead of a human silhouette; the orientation angle, fitted through ellipse modeling, of the blob in each frame allows classification that detects falls without pretrained data. System performance was tested using subjects in various age groups and “fall” or “non-fall” were detected with 99.01% accuracy.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"12 1\",\"pages\":\"285-300\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/AIS-210605\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIS-210605","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

跌倒是独居老人受伤和死亡的主要原因。辅助生活技术的核心服务是通过可穿戴设备、环境传感器和视觉系统监测老年人的活动。视觉系统是最好的解决方案之一,因为它们的实施和维护成本最低。然而,目前的视觉系统在处理杂乱环境、遮挡、全天照明变化和无照明监测方面的能力有限。为了克服这些问题,本文提出了一种针对老年人的24/7监控系统,该系统使用作为传统服装一部分的反光胶带,通过固定在生活环境中的低成本红外(IR)摄像机进行监控。红外摄像机即使在光照变化或亮度为零的情况下也能记录视频。对于杂波和遮挡的分类,磁带被认为是一个斑点,而不是一个人的轮廓;通过椭圆建模,每个帧中的斑点的方向角度允许在没有预训练数据的情况下检测跌倒。使用不同年龄组的受试者对系统性能进行测试,检测“跌倒”或“未跌倒”的准确率为99.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real time fall detection using infrared cameras and reflective tapes under day/night luminance
Falls are the leading cause of injuries and death in elderly individuals who live alone at home. The core service of assistive living technology is to monitor elders’ activities through wearable devices, ambient sensors, and vision systems. Vision systems are among the best solutions, as their implementation and maintenance costs are the lowest. However, current vision systems are limited in their ability to handle cluttered environments, occlusion, illumination changes throughout the day, and monitoring without illumination. To overcome these issues, this paper proposes a 24/7 monitoring system for elders that uses retroreflective tape fabricated as part of conventional clothing, monitored through low-cost infrared (IR) cameras fixed in the living environment. IR camera records video even when there are changes in illumination or zero luminance. For classification among clutter and occlusion, the tape is considered as a blob instead of a human silhouette; the orientation angle, fitted through ellipse modeling, of the blob in each frame allows classification that detects falls without pretrained data. System performance was tested using subjects in various age groups and “fall” or “non-fall” were detected with 99.01% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ambient Intelligence and Smart Environments
Journal of Ambient Intelligence and Smart Environments COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
4.30
自引率
17.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.
期刊最新文献
Evaluation factors of adopting smart home IoT: The hybrid fuzzy MCDM approach for robot vacuum Hybrid fuzzy response threshold-based distributed task allocation in heterogeneous multi-robot environment From programming-to-modeling-to-prompts smart ubiquitous applications A UAV deployment strategy based on a probabilistic data coverage model for mobile CrowdSensing applications Memoization based priority-aware task management for QoS provisioning in IoT gateways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1