M. M. Saddiqi, Wanqing Zhao, Sarah Cotterill, R. Dereli
{"title":"合流溢流智能管理:从古老技术到人工智能","authors":"M. M. Saddiqi, Wanqing Zhao, Sarah Cotterill, R. Dereli","doi":"10.1002/wat2.1635","DOIUrl":null,"url":null,"abstract":"Sewer systems are an essential part of sanitation infrastructure for protecting human and ecosystem health. Initially, they were used to solely convey stormwater, but over time municipal sewage was discharged to these conduits and transformed them into combined sewer systems (CSS). Due to climate change and rapid urbanization, these systems are no longer sufficient and overflow in wet weather conditions. Mechanistic and data‐driven models have been frequently used in research on combined sewer overflow (CSO) management integrating low‐impact development and gray‐green infrastructures. Recent advances in measurement, communication, and computation technologies have simplified data collection methods. As a result, technologies such as artificial intelligence (AI), geographic information system, and remote sensing can be integrated into CSO and stormwater management as a part of the smart city and digital twin concepts to build climate‐resilient infrastructures and services. Therefore, smart management of CSS is now both technically and economically feasible to tackle the challenges ahead. This review article explores CSO characteristics and associated impact on receiving waterbodies, evaluates suitable models for CSO management, and presents studies including above‐mentioned technologies in the context of smart CSO and stormwater management. Although integration of all these technologies has a big potential, further research is required to achieve AI‐controlled CSS for robust and agile CSO mitigation.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"3 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Smart management of combined sewer overflows: From an ancient technology to artificial intelligence\",\"authors\":\"M. M. Saddiqi, Wanqing Zhao, Sarah Cotterill, R. Dereli\",\"doi\":\"10.1002/wat2.1635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sewer systems are an essential part of sanitation infrastructure for protecting human and ecosystem health. Initially, they were used to solely convey stormwater, but over time municipal sewage was discharged to these conduits and transformed them into combined sewer systems (CSS). Due to climate change and rapid urbanization, these systems are no longer sufficient and overflow in wet weather conditions. Mechanistic and data‐driven models have been frequently used in research on combined sewer overflow (CSO) management integrating low‐impact development and gray‐green infrastructures. Recent advances in measurement, communication, and computation technologies have simplified data collection methods. As a result, technologies such as artificial intelligence (AI), geographic information system, and remote sensing can be integrated into CSO and stormwater management as a part of the smart city and digital twin concepts to build climate‐resilient infrastructures and services. Therefore, smart management of CSS is now both technically and economically feasible to tackle the challenges ahead. This review article explores CSO characteristics and associated impact on receiving waterbodies, evaluates suitable models for CSO management, and presents studies including above‐mentioned technologies in the context of smart CSO and stormwater management. Although integration of all these technologies has a big potential, further research is required to achieve AI‐controlled CSS for robust and agile CSO mitigation.\",\"PeriodicalId\":23774,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Water\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Water\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/wat2.1635\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Water","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/wat2.1635","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Smart management of combined sewer overflows: From an ancient technology to artificial intelligence
Sewer systems are an essential part of sanitation infrastructure for protecting human and ecosystem health. Initially, they were used to solely convey stormwater, but over time municipal sewage was discharged to these conduits and transformed them into combined sewer systems (CSS). Due to climate change and rapid urbanization, these systems are no longer sufficient and overflow in wet weather conditions. Mechanistic and data‐driven models have been frequently used in research on combined sewer overflow (CSO) management integrating low‐impact development and gray‐green infrastructures. Recent advances in measurement, communication, and computation technologies have simplified data collection methods. As a result, technologies such as artificial intelligence (AI), geographic information system, and remote sensing can be integrated into CSO and stormwater management as a part of the smart city and digital twin concepts to build climate‐resilient infrastructures and services. Therefore, smart management of CSS is now both technically and economically feasible to tackle the challenges ahead. This review article explores CSO characteristics and associated impact on receiving waterbodies, evaluates suitable models for CSO management, and presents studies including above‐mentioned technologies in the context of smart CSO and stormwater management. Although integration of all these technologies has a big potential, further research is required to achieve AI‐controlled CSS for robust and agile CSO mitigation.
期刊介绍:
The WIREs series is truly unique, blending the best aspects of encyclopedic reference works and review journals into a dynamic online format. These remarkable resources foster a research culture that transcends disciplinary boundaries, all while upholding the utmost scientific and presentation excellence. However, they go beyond traditional publications and are, in essence, ever-evolving databases of the latest cutting-edge reviews.