Nirupama Talele, Jason Teutsch, R. Erbacher, T. Jaeger
{"title":"大型系统的监视器放置","authors":"Nirupama Talele, Jason Teutsch, R. Erbacher, T. Jaeger","doi":"10.1145/2613087.2613107","DOIUrl":null,"url":null,"abstract":"System administrators employ network monitors, such as traffic analyzers, network intrusion prevention systems, and firewalls, to protect the network's hosts from remote adversaries. The problem is that vulnerabilities are caused primarily by errors in the host software and/or configuration, but modern hosts are too complex for system administrators to understand, limiting monitoring to known attacks. Researchers have proposed automated methods to compute network monitor placements, but these methods also fail to model attack paths within hosts and/or fail to scale beyond tens of hosts. In this paper, we propose a method to compute network monitor placements that leverages commonality in available access control policies across hosts to compute network monitor placement for large-scale systems. We introduce an equivalence property, called flow equivalence, which reduces the size of the placement problem to be proportional to the number of unique host configurations. This process enables us to solve mediation placement problems for thousands of hosts with access control policies containing of thousands of rules in seconds (less than 125 for a network of 9500 hosts). Our method enables administrators to place network monitors in large-scale networks automatically, leveraging the actual host configuration, to detect and prevent network-borne threats.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"41 1","pages":"29-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Monitor placement for large-scale systems\",\"authors\":\"Nirupama Talele, Jason Teutsch, R. Erbacher, T. Jaeger\",\"doi\":\"10.1145/2613087.2613107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System administrators employ network monitors, such as traffic analyzers, network intrusion prevention systems, and firewalls, to protect the network's hosts from remote adversaries. The problem is that vulnerabilities are caused primarily by errors in the host software and/or configuration, but modern hosts are too complex for system administrators to understand, limiting monitoring to known attacks. Researchers have proposed automated methods to compute network monitor placements, but these methods also fail to model attack paths within hosts and/or fail to scale beyond tens of hosts. In this paper, we propose a method to compute network monitor placements that leverages commonality in available access control policies across hosts to compute network monitor placement for large-scale systems. We introduce an equivalence property, called flow equivalence, which reduces the size of the placement problem to be proportional to the number of unique host configurations. This process enables us to solve mediation placement problems for thousands of hosts with access control policies containing of thousands of rules in seconds (less than 125 for a network of 9500 hosts). Our method enables administrators to place network monitors in large-scale networks automatically, leveraging the actual host configuration, to detect and prevent network-borne threats.\",\"PeriodicalId\":74509,\"journal\":{\"name\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"volume\":\"41 1\",\"pages\":\"29-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2613087.2613107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2613087.2613107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System administrators employ network monitors, such as traffic analyzers, network intrusion prevention systems, and firewalls, to protect the network's hosts from remote adversaries. The problem is that vulnerabilities are caused primarily by errors in the host software and/or configuration, but modern hosts are too complex for system administrators to understand, limiting monitoring to known attacks. Researchers have proposed automated methods to compute network monitor placements, but these methods also fail to model attack paths within hosts and/or fail to scale beyond tens of hosts. In this paper, we propose a method to compute network monitor placements that leverages commonality in available access control policies across hosts to compute network monitor placement for large-scale systems. We introduce an equivalence property, called flow equivalence, which reduces the size of the placement problem to be proportional to the number of unique host configurations. This process enables us to solve mediation placement problems for thousands of hosts with access control policies containing of thousands of rules in seconds (less than 125 for a network of 9500 hosts). Our method enables administrators to place network monitors in large-scale networks automatically, leveraging the actual host configuration, to detect and prevent network-borne threats.