{"title":"三元混合高强混凝土力学性能的统计分析","authors":"J. Robinson, V. Srisanthi","doi":"10.32047/cwb.2022.27.6.2","DOIUrl":null,"url":null,"abstract":"The growing demand for high strength concrete [HSC] in the construction industry increases the usage of cement, resulting in environmental issues. Recent studies are showing that the utilization of cementitious materials in concrete can effectively reduce the volume of cement. In the present study, ternary blended combinations were prepared using cement, silica fume, and fly ash to attain the HSC. Here, cement was partially replaced by silica fume [2.5, 5, 7.5, and 10%] and fly ash [5, 10, and 15%], respectively. Mini slump cone test was conducted to identify the compatibility of cement paste with polycarboxylate ether [PCE] based superplasticizer. The packing density of aggregates was calculated to reduce the voids and improve the particle distribution in HSC. An experimental investigation was carried out, and the ultimate compressive strength was obtained as 71.55 MPa at 28 days of curing. Multi linear regression analysis was conducted to simulate the mix design for aiding the prediction of compressive strength of the HSC.","PeriodicalId":55632,"journal":{"name":"Cement Wapno Beton","volume":"80 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis on mechanical behaviour of ternary blended high strength concrete\",\"authors\":\"J. Robinson, V. Srisanthi\",\"doi\":\"10.32047/cwb.2022.27.6.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for high strength concrete [HSC] in the construction industry increases the usage of cement, resulting in environmental issues. Recent studies are showing that the utilization of cementitious materials in concrete can effectively reduce the volume of cement. In the present study, ternary blended combinations were prepared using cement, silica fume, and fly ash to attain the HSC. Here, cement was partially replaced by silica fume [2.5, 5, 7.5, and 10%] and fly ash [5, 10, and 15%], respectively. Mini slump cone test was conducted to identify the compatibility of cement paste with polycarboxylate ether [PCE] based superplasticizer. The packing density of aggregates was calculated to reduce the voids and improve the particle distribution in HSC. An experimental investigation was carried out, and the ultimate compressive strength was obtained as 71.55 MPa at 28 days of curing. Multi linear regression analysis was conducted to simulate the mix design for aiding the prediction of compressive strength of the HSC.\",\"PeriodicalId\":55632,\"journal\":{\"name\":\"Cement Wapno Beton\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement Wapno Beton\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32047/cwb.2022.27.6.2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement Wapno Beton","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32047/cwb.2022.27.6.2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Statistical analysis on mechanical behaviour of ternary blended high strength concrete
The growing demand for high strength concrete [HSC] in the construction industry increases the usage of cement, resulting in environmental issues. Recent studies are showing that the utilization of cementitious materials in concrete can effectively reduce the volume of cement. In the present study, ternary blended combinations were prepared using cement, silica fume, and fly ash to attain the HSC. Here, cement was partially replaced by silica fume [2.5, 5, 7.5, and 10%] and fly ash [5, 10, and 15%], respectively. Mini slump cone test was conducted to identify the compatibility of cement paste with polycarboxylate ether [PCE] based superplasticizer. The packing density of aggregates was calculated to reduce the voids and improve the particle distribution in HSC. An experimental investigation was carried out, and the ultimate compressive strength was obtained as 71.55 MPa at 28 days of curing. Multi linear regression analysis was conducted to simulate the mix design for aiding the prediction of compressive strength of the HSC.
Cement Wapno BetonCONSTRUCTION & BUILDING TECHNOLOGY-MATERIALS SCIENCE, COMPOSITES
CiteScore
1.30
自引率
28.60%
发文量
0
审稿时长
>12 weeks
期刊介绍:
The Publisher of the scientific bimonthly of international circulation, entitled "Cement-Wapno-Beton" ["Cement-Lime-Concrete"], is the Fundacja Cement, Wapno, Beton [Foundation Cement, Lime, Concrete]. The periodical is dedicated to the issues concerning mineral setting materials and concrete. It is concerned with the publication of academic and research works from the field of chemistry and technology of building setting materials and concrete