基于视频数据运动表示的动作识别

Xin Sun, Di Huang, Yunhong Wang, Jie Qin
{"title":"基于视频数据运动表示的动作识别","authors":"Xin Sun, Di Huang, Yunhong Wang, Jie Qin","doi":"10.1109/ICIP.2014.7025306","DOIUrl":null,"url":null,"abstract":"The local space-time feature is an effective way to represent video data and achieves state-of-the-art performance in action recognition. However, in majority of cases, it only captures the static or dynamic cues of the image sequence. In this paper, we propose a novel kinematic descriptor, namely Static and Dynamic fEature Velocity (SDEV), which models the changes of both static and dynamic information with time for action recognition. It is not only discriminative itself, but also complementary to the existing descriptors, thus leading to more comprehensive representation of actions by their combination. Evaluated on two public databases, i.e. UCF sports and Olympic Sports, the results clearly illustrate the competency of SDEV.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"86 1","pages":"1530-1534"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Action recognition based on kinematic representation of video data\",\"authors\":\"Xin Sun, Di Huang, Yunhong Wang, Jie Qin\",\"doi\":\"10.1109/ICIP.2014.7025306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local space-time feature is an effective way to represent video data and achieves state-of-the-art performance in action recognition. However, in majority of cases, it only captures the static or dynamic cues of the image sequence. In this paper, we propose a novel kinematic descriptor, namely Static and Dynamic fEature Velocity (SDEV), which models the changes of both static and dynamic information with time for action recognition. It is not only discriminative itself, but also complementary to the existing descriptors, thus leading to more comprehensive representation of actions by their combination. Evaluated on two public databases, i.e. UCF sports and Olympic Sports, the results clearly illustrate the competency of SDEV.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"86 1\",\"pages\":\"1530-1534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

局部时空特征是一种表示视频数据的有效方法,在动作识别中可以达到最先进的性能。然而,在大多数情况下,它只捕获图像序列的静态或动态线索。在本文中,我们提出了一种新的运动学描述符,即静态和动态特征速度(SDEV),它对静态和动态信息随时间的变化进行建模,用于动作识别。它不仅本身具有判别性,而且与现有的描述符相辅相成,从而通过它们的组合对动作进行更全面的表征。在UCF体育和Olympic体育两个公共数据库中进行了评价,结果清楚地说明了SDEV的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Action recognition based on kinematic representation of video data
The local space-time feature is an effective way to represent video data and achieves state-of-the-art performance in action recognition. However, in majority of cases, it only captures the static or dynamic cues of the image sequence. In this paper, we propose a novel kinematic descriptor, namely Static and Dynamic fEature Velocity (SDEV), which models the changes of both static and dynamic information with time for action recognition. It is not only discriminative itself, but also complementary to the existing descriptors, thus leading to more comprehensive representation of actions by their combination. Evaluated on two public databases, i.e. UCF sports and Olympic Sports, the results clearly illustrate the competency of SDEV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1