{"title":"光学和雷达遥感数据在国土监测任务中的联合应用","authors":"V N Kopenkov","doi":"10.18287/1613-0073-2019-2391-334-341","DOIUrl":null,"url":null,"abstract":"At the present time, a lot of problems in a sphere of fundamental sciences as well as technical and applied tasks can be solved only with the use of satellite images, since their usage reduces material, financial and time costs significantly in comparison with traditional methods. One of the modern integrated approach remote sensing processing is to join the measurements obtained from the various sources, such as optical and radar sensors, allowing to achieve a gain in comparison with independent processing due to the extension of the information volume and the opportunities of data acquisition (weather conditions, spectral ranges, etc.). However, methods of digital processing and interpretation of radar data, as well as qualitative and proven methods and algorithms for joint processing of optical and radar satellite images, has not sufficiently been well developed yet. Therefore, the development of new methods and information technology of joint analysis and interpretation of optical and radar data which are a major issue of the current paper, are certainly relevant. The paper presents an information technology for joint processing of optical and radar satellite imagery, based on training the processing procedure based on the reference values of data from sensors of the one type (optical data), followed by applying to both data types: optical and SAR data.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined usage of the optical and radar remote sensing data in territory monitoring tasks\",\"authors\":\"V N Kopenkov\",\"doi\":\"10.18287/1613-0073-2019-2391-334-341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the present time, a lot of problems in a sphere of fundamental sciences as well as technical and applied tasks can be solved only with the use of satellite images, since their usage reduces material, financial and time costs significantly in comparison with traditional methods. One of the modern integrated approach remote sensing processing is to join the measurements obtained from the various sources, such as optical and radar sensors, allowing to achieve a gain in comparison with independent processing due to the extension of the information volume and the opportunities of data acquisition (weather conditions, spectral ranges, etc.). However, methods of digital processing and interpretation of radar data, as well as qualitative and proven methods and algorithms for joint processing of optical and radar satellite images, has not sufficiently been well developed yet. Therefore, the development of new methods and information technology of joint analysis and interpretation of optical and radar data which are a major issue of the current paper, are certainly relevant. The paper presents an information technology for joint processing of optical and radar satellite imagery, based on training the processing procedure based on the reference values of data from sensors of the one type (optical data), followed by applying to both data types: optical and SAR data.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-334-341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-334-341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined usage of the optical and radar remote sensing data in territory monitoring tasks
At the present time, a lot of problems in a sphere of fundamental sciences as well as technical and applied tasks can be solved only with the use of satellite images, since their usage reduces material, financial and time costs significantly in comparison with traditional methods. One of the modern integrated approach remote sensing processing is to join the measurements obtained from the various sources, such as optical and radar sensors, allowing to achieve a gain in comparison with independent processing due to the extension of the information volume and the opportunities of data acquisition (weather conditions, spectral ranges, etc.). However, methods of digital processing and interpretation of radar data, as well as qualitative and proven methods and algorithms for joint processing of optical and radar satellite images, has not sufficiently been well developed yet. Therefore, the development of new methods and information technology of joint analysis and interpretation of optical and radar data which are a major issue of the current paper, are certainly relevant. The paper presents an information technology for joint processing of optical and radar satellite imagery, based on training the processing procedure based on the reference values of data from sensors of the one type (optical data), followed by applying to both data types: optical and SAR data.