传播相位对等离子体光模耦合的影响

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.010003
Wan-xia Huang, Yabo Zhang, Yuan Pei, Maosheng Wang, Fenghua Shi, Kuan-Yi Li
{"title":"传播相位对等离子体光模耦合的影响","authors":"Wan-xia Huang, Yabo Zhang, Yuan Pei, Maosheng Wang, Fenghua Shi, Kuan-Yi Li","doi":"10.3788/col202321.010003","DOIUrl":null,"url":null,"abstract":"The temporal coupled-mode theory (TCMT) has made significant progress in recent years, and is widely applied in explaining a variety of optical phenomena. In this paper, the optical characteristics of the metasurface composed of nano-bars and nano-rings are simulated. The simulation results are well explained by TCMT under the coupled basis vector. However, when the structural asymmetry is large, the fitting of results shows that the total radiation loss is not conservative, in contradiction to the requirement of traditional TCMT. We solved this inconsistency by introducing the propagation phase into the near-field coupling term of TCMT. The studies show that, unlike the local mode near the exceptional point which corresponds to the radiation loss of the bright mode, the global mode near the diabolic point is closely related to the propagation phase. Furthermore, the structure near the diabolic point shows characteristic cross-coupling with the change of period. This study proposes a new theoretical framework for comprehending the interaction of light and matter and offers some guiding implications for the application of TCMT to a variety of related domains.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"32 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of propagation phase on the coupling of plasmonic optical modes\",\"authors\":\"Wan-xia Huang, Yabo Zhang, Yuan Pei, Maosheng Wang, Fenghua Shi, Kuan-Yi Li\",\"doi\":\"10.3788/col202321.010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temporal coupled-mode theory (TCMT) has made significant progress in recent years, and is widely applied in explaining a variety of optical phenomena. In this paper, the optical characteristics of the metasurface composed of nano-bars and nano-rings are simulated. The simulation results are well explained by TCMT under the coupled basis vector. However, when the structural asymmetry is large, the fitting of results shows that the total radiation loss is not conservative, in contradiction to the requirement of traditional TCMT. We solved this inconsistency by introducing the propagation phase into the near-field coupling term of TCMT. The studies show that, unlike the local mode near the exceptional point which corresponds to the radiation loss of the bright mode, the global mode near the diabolic point is closely related to the propagation phase. Furthermore, the structure near the diabolic point shows characteristic cross-coupling with the change of period. This study proposes a new theoretical framework for comprehending the interaction of light and matter and offers some guiding implications for the application of TCMT to a variety of related domains.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.010003\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.010003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

时间耦合模理论(TCMT)近年来取得了重大进展,被广泛应用于解释各种光学现象。本文模拟了由纳米棒和纳米环组成的超表面的光学特性。在耦合基向量下,TCMT很好地解释了仿真结果。然而,当结构不对称较大时,结果的拟合表明总辐射损失不保守,这与传统TCMT的要求相矛盾。我们通过在TCMT的近场耦合项中引入传播相位来解决这种不一致。研究表明,与异常点附近的局部模态对应于亮模态的辐射损失不同,魔鬼点附近的全局模态与传播相位密切相关。此外,在魔鬼点附近的结构随周期的变化表现出特征性的交叉耦合。本研究为理解光与物质相互作用提供了一个新的理论框架,并为TCMT在相关领域的应用提供了一些指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of propagation phase on the coupling of plasmonic optical modes
The temporal coupled-mode theory (TCMT) has made significant progress in recent years, and is widely applied in explaining a variety of optical phenomena. In this paper, the optical characteristics of the metasurface composed of nano-bars and nano-rings are simulated. The simulation results are well explained by TCMT under the coupled basis vector. However, when the structural asymmetry is large, the fitting of results shows that the total radiation loss is not conservative, in contradiction to the requirement of traditional TCMT. We solved this inconsistency by introducing the propagation phase into the near-field coupling term of TCMT. The studies show that, unlike the local mode near the exceptional point which corresponds to the radiation loss of the bright mode, the global mode near the diabolic point is closely related to the propagation phase. Furthermore, the structure near the diabolic point shows characteristic cross-coupling with the change of period. This study proposes a new theoretical framework for comprehending the interaction of light and matter and offers some guiding implications for the application of TCMT to a variety of related domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1