基于二维材料的人工智能膜中的可调质量输运

Dong Han , Xinyao Dong , Geliang Yu , Tiantian Gao , Kai-Ge Zhou
{"title":"基于二维材料的人工智能膜中的可调质量输运","authors":"Dong Han ,&nbsp;Xinyao Dong ,&nbsp;Geliang Yu ,&nbsp;Tiantian Gao ,&nbsp;Kai-Ge Zhou","doi":"10.1016/j.advmem.2022.100045","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by biological systems in nature, smart membranes with stimuli responsiveness exhibit advantages over traditional membranes with stationary structures and have shown the potential in breaking the thresholds of traditional membrane technologies. Unfortunately, responsive polymeric membranes suffer from inevitable fouling and the trade-off effect between permeability and selectivity, seriously hindering further applications. Recently, smart membranes based on two-dimensional (2D) nanomaterials with regulated nanochannel sizes and surface charges triggered by external stimuli have attracted increasing attention and are highly suitable for membrane technologies due to their promising properties. In this review, we summarize the state-of-art progress on the 2D smart membranes (2DSMs) including the general design strategies for fabricating 2DSMs, recent advances in responsive mechanisms under various stimuli and diverse applications such as gas separation, water treatment, ion rectification and osmotic energy harvest. To conclude, we propose a brief perspective on the challenges and opportunities in this fast-growing field.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"2 ","pages":"Article 100045"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823422000215/pdfft?md5=25a64f78f915118caf4586a245f26d03&pid=1-s2.0-S2772823422000215-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Tunable mass transport in the artificial smart membranes based on two-dimensional materials\",\"authors\":\"Dong Han ,&nbsp;Xinyao Dong ,&nbsp;Geliang Yu ,&nbsp;Tiantian Gao ,&nbsp;Kai-Ge Zhou\",\"doi\":\"10.1016/j.advmem.2022.100045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by biological systems in nature, smart membranes with stimuli responsiveness exhibit advantages over traditional membranes with stationary structures and have shown the potential in breaking the thresholds of traditional membrane technologies. Unfortunately, responsive polymeric membranes suffer from inevitable fouling and the trade-off effect between permeability and selectivity, seriously hindering further applications. Recently, smart membranes based on two-dimensional (2D) nanomaterials with regulated nanochannel sizes and surface charges triggered by external stimuli have attracted increasing attention and are highly suitable for membrane technologies due to their promising properties. In this review, we summarize the state-of-art progress on the 2D smart membranes (2DSMs) including the general design strategies for fabricating 2DSMs, recent advances in responsive mechanisms under various stimuli and diverse applications such as gas separation, water treatment, ion rectification and osmotic energy harvest. To conclude, we propose a brief perspective on the challenges and opportunities in this fast-growing field.</p></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"2 \",\"pages\":\"Article 100045\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772823422000215/pdfft?md5=25a64f78f915118caf4586a245f26d03&pid=1-s2.0-S2772823422000215-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823422000215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823422000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

受自然界生物系统的启发,具有刺激响应性的智能膜比具有固定结构的传统膜具有优势,并显示出突破传统膜技术门槛的潜力。不幸的是,反应性聚合物膜受到不可避免的污染以及渗透率和选择性之间的权衡效应,严重阻碍了进一步的应用。近年来,基于二维(2D)纳米材料的智能膜越来越受到人们的关注,其具有可调节纳米通道尺寸和外部刺激引发的表面电荷,并且由于其具有良好的性能而非常适合膜技术。本文综述了二维智能膜(2DSMs)的研究进展,包括制备二维智能膜的一般设计策略、各种刺激下的响应机制以及气体分离、水处理、离子精馏和渗透能量收集等多种应用的最新进展。最后,我们对这个快速发展的领域的挑战和机遇提出了一个简要的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunable mass transport in the artificial smart membranes based on two-dimensional materials

Inspired by biological systems in nature, smart membranes with stimuli responsiveness exhibit advantages over traditional membranes with stationary structures and have shown the potential in breaking the thresholds of traditional membrane technologies. Unfortunately, responsive polymeric membranes suffer from inevitable fouling and the trade-off effect between permeability and selectivity, seriously hindering further applications. Recently, smart membranes based on two-dimensional (2D) nanomaterials with regulated nanochannel sizes and surface charges triggered by external stimuli have attracted increasing attention and are highly suitable for membrane technologies due to their promising properties. In this review, we summarize the state-of-art progress on the 2D smart membranes (2DSMs) including the general design strategies for fabricating 2DSMs, recent advances in responsive mechanisms under various stimuli and diverse applications such as gas separation, water treatment, ion rectification and osmotic energy harvest. To conclude, we propose a brief perspective on the challenges and opportunities in this fast-growing field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
期刊最新文献
Progress in design of halloysite nanotubes-polymer nanocomposite membranes and their applications Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics Spray-assisted assembly of thin-film composite membranes in one process Erratum regarding Declaration of Competing Interest statements in previously published articles Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1