Zhonggang Liu , Xi Liu , Bingchun Wang , Xinying Wang , Dongzhen Lu , Dijun Shen , Zhefei Sun , Yongchang Liu , Wenli Zhang , Qiaobao Zhang , Yunyong Li
{"title":"具有导电弹性网络的超厚、致密双封装Sb阳极结构有望使钾离子电池具有高面积和高体积容量","authors":"Zhonggang Liu , Xi Liu , Bingchun Wang , Xinying Wang , Dongzhen Lu , Dijun Shen , Zhefei Sun , Yongchang Liu , Wenli Zhang , Qiaobao Zhang , Yunyong Li","doi":"10.1016/j.esci.2023.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-thick, dense alloy-type anodes are promising for achieving large areal and volumetric performance in potassium-ion batteries (PIBs), but severe volume expansion as well as sluggish ion and electron diffusion kinetics heavily impede their widespread application. Herein, we design highly dense (3.1 g cm<sup>−3</sup>) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and graphene dual-encapsulated nano-Sb monolith architectures (HD-Sb@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-G) with high-conductivity elastic networks (1560 S m<sup>−1</sup>) and compact dually encapsulated structures, which exhibit a large volumetric capacity of 1780.2 mAh cm<sup>−3</sup> (gravimetric capacity: 565.0 mAh g<sup>−1</sup>), a long-term stable lifespan of 500 cycles with 82% retention, and a large areal capacity of 8.6 mAh cm<sup>−2</sup> (loading: 31 mg cm<sup>−2</sup>) in PIBs. Using <em>ex-situ</em> SEM, <em>in-situ</em> TEM, kinetic investigations, and theoretical calculations, we reveal that the excellent areal and volumetric performance mechanism stems from the three dimensional (3D) high-conductivity elastic networks and the dual-encapsulated Sb architecture of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and graphene; these effectively mitigate against volume expansion and the pulverization of Sb, offering good electrolyte penetration and rapid ionic/electronic transmission. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> also decreases the K<sup>+</sup> diffusion energy barrier, and the ultra-thick compact electrode ensures volumetric and areal performance. These findings provide a feasible strategy for fabricating ultra-thick, dense alloy-type electrodes to achieve high areal and volumetric capacity energy storage <em>via</em> highly-dense, dual-encapsulated architectures with conductive elastic networks.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100177"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001179/pdfft?md5=ee19e7c8d9b5ef9234a6fa991ae12d4c&pid=1-s2.0-S2667141723001179-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Ultra-thick, dense dual-encapsulated Sb anode architecture with conductively elastic networks promises potassium-ion batteries with high areal and volumetric capacities\",\"authors\":\"Zhonggang Liu , Xi Liu , Bingchun Wang , Xinying Wang , Dongzhen Lu , Dijun Shen , Zhefei Sun , Yongchang Liu , Wenli Zhang , Qiaobao Zhang , Yunyong Li\",\"doi\":\"10.1016/j.esci.2023.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultra-thick, dense alloy-type anodes are promising for achieving large areal and volumetric performance in potassium-ion batteries (PIBs), but severe volume expansion as well as sluggish ion and electron diffusion kinetics heavily impede their widespread application. Herein, we design highly dense (3.1 g cm<sup>−3</sup>) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and graphene dual-encapsulated nano-Sb monolith architectures (HD-Sb@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-G) with high-conductivity elastic networks (1560 S m<sup>−1</sup>) and compact dually encapsulated structures, which exhibit a large volumetric capacity of 1780.2 mAh cm<sup>−3</sup> (gravimetric capacity: 565.0 mAh g<sup>−1</sup>), a long-term stable lifespan of 500 cycles with 82% retention, and a large areal capacity of 8.6 mAh cm<sup>−2</sup> (loading: 31 mg cm<sup>−2</sup>) in PIBs. Using <em>ex-situ</em> SEM, <em>in-situ</em> TEM, kinetic investigations, and theoretical calculations, we reveal that the excellent areal and volumetric performance mechanism stems from the three dimensional (3D) high-conductivity elastic networks and the dual-encapsulated Sb architecture of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and graphene; these effectively mitigate against volume expansion and the pulverization of Sb, offering good electrolyte penetration and rapid ionic/electronic transmission. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> also decreases the K<sup>+</sup> diffusion energy barrier, and the ultra-thick compact electrode ensures volumetric and areal performance. These findings provide a feasible strategy for fabricating ultra-thick, dense alloy-type electrodes to achieve high areal and volumetric capacity energy storage <em>via</em> highly-dense, dual-encapsulated architectures with conductive elastic networks.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 6\",\"pages\":\"Article 100177\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001179/pdfft?md5=ee19e7c8d9b5ef9234a6fa991ae12d4c&pid=1-s2.0-S2667141723001179-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1
摘要
超厚、致密合金型阳极有望在钾离子电池(PIBs)中实现大面积和大体积性能,但严重的体积膨胀以及缓慢的离子和电子扩散动力学严重阻碍了它们的广泛应用。在此,我们设计了高密度(3.1 g cm−3)Ti3C2Tx MXene和石墨烯双封装纳米sb单体结构(HD-Sb@Ti3C2Tx-G),具有高导电性弹性网络(1560 S m−1)和紧凑的双封装结构,其PIBs具有1780.2 mAh cm−3的大容量(重力容量:565.0 mAh g−1),500次循环的长期稳定寿命和82%的保留率,以及8.6 mAh cm−2的大面积容量(负载:31 mg cm−2)。通过非原位扫描电镜、原位透射电镜、动力学研究和理论计算,我们发现优异的面积和体积性能机制源于三维(3D)高导电性弹性网络和Ti3C2Tx和石墨烯的双封装Sb结构;这些有效地减轻了体积膨胀和Sb的粉碎,提供了良好的电解质渗透和快速的离子/电子传输。Ti3C2Tx还降低了K+扩散能垒,超厚致密电极保证了体积和面积性能。这些发现为制造超厚、致密合金型电极提供了一种可行的策略,通过具有导电弹性网络的高密度双封装架构实现高面积和体积容量的储能。
Ultra-thick, dense dual-encapsulated Sb anode architecture with conductively elastic networks promises potassium-ion batteries with high areal and volumetric capacities
Ultra-thick, dense alloy-type anodes are promising for achieving large areal and volumetric performance in potassium-ion batteries (PIBs), but severe volume expansion as well as sluggish ion and electron diffusion kinetics heavily impede their widespread application. Herein, we design highly dense (3.1 g cm−3) Ti3C2Tx MXene and graphene dual-encapsulated nano-Sb monolith architectures (HD-Sb@Ti3C2Tx-G) with high-conductivity elastic networks (1560 S m−1) and compact dually encapsulated structures, which exhibit a large volumetric capacity of 1780.2 mAh cm−3 (gravimetric capacity: 565.0 mAh g−1), a long-term stable lifespan of 500 cycles with 82% retention, and a large areal capacity of 8.6 mAh cm−2 (loading: 31 mg cm−2) in PIBs. Using ex-situ SEM, in-situ TEM, kinetic investigations, and theoretical calculations, we reveal that the excellent areal and volumetric performance mechanism stems from the three dimensional (3D) high-conductivity elastic networks and the dual-encapsulated Sb architecture of Ti3C2Tx and graphene; these effectively mitigate against volume expansion and the pulverization of Sb, offering good electrolyte penetration and rapid ionic/electronic transmission. Ti3C2Tx also decreases the K+ diffusion energy barrier, and the ultra-thick compact electrode ensures volumetric and areal performance. These findings provide a feasible strategy for fabricating ultra-thick, dense alloy-type electrodes to achieve high areal and volumetric capacity energy storage via highly-dense, dual-encapsulated architectures with conductive elastic networks.