一种基于逆查询的确定性有限自动机学习算法

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2022-12-12 DOI:10.5755/j01.itc.51.4.31394
Farah Haneef, M. Sindhu
{"title":"一种基于逆查询的确定性有限自动机学习算法","authors":"Farah Haneef, M. Sindhu","doi":"10.5755/j01.itc.51.4.31394","DOIUrl":null,"url":null,"abstract":"Automaton learning has attained a renewed interest in many interesting areas of software engineering including formal verification, software testing and model inference. An automaton learning algorithm typically learns the regular language of a DFA with the help of queries. These queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT can generally answer two types of queries asked by the learning algorithm; membership queries and equivalence queries. Learning algorithms can be categorized into two broad categories: incremental and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k-bit learning. Existing automaton learning algorithms have polynomial (atleast cubic) time complexity in the presence of a MAT. Therefore, sometimes these algorithms even become fail to learn large complex software systems. In this research work, we have reduced the complexity of the Deterministic Finite Automaton (DFA) learning into lower bounds (from cubic to square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries (DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA. The DLIQ algorithm takes O(|Ps||F|+|Σ|N) complexity in the presence of a MAT which is also equipped to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing a proof correctness and termination of the DLIQ algorithm. We also compare the performance of DLIQ with ID algorithm by implementing an evaluation framework. Our results depict that DLIQ is more efficient than ID algorithm in terms of time complexity.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"10 1","pages":"611-624"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DLIQ: A Deterministic Finite Automaton Learning Algorithm through Inverse Queries\",\"authors\":\"Farah Haneef, M. Sindhu\",\"doi\":\"10.5755/j01.itc.51.4.31394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automaton learning has attained a renewed interest in many interesting areas of software engineering including formal verification, software testing and model inference. An automaton learning algorithm typically learns the regular language of a DFA with the help of queries. These queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT can generally answer two types of queries asked by the learning algorithm; membership queries and equivalence queries. Learning algorithms can be categorized into two broad categories: incremental and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k-bit learning. Existing automaton learning algorithms have polynomial (atleast cubic) time complexity in the presence of a MAT. Therefore, sometimes these algorithms even become fail to learn large complex software systems. In this research work, we have reduced the complexity of the Deterministic Finite Automaton (DFA) learning into lower bounds (from cubic to square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries (DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA. The DLIQ algorithm takes O(|Ps||F|+|Σ|N) complexity in the presence of a MAT which is also equipped to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing a proof correctness and termination of the DLIQ algorithm. We also compare the performance of DLIQ with ID algorithm by implementing an evaluation framework. Our results depict that DLIQ is more efficient than ID algorithm in terms of time complexity.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"10 1\",\"pages\":\"611-624\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.51.4.31394\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.51.4.31394","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在软件工程的许多有趣的领域,包括形式验证、软件测试和模型推理,自动机学习已经获得了新的兴趣。自动学习算法通常在查询的帮助下学习DFA的规则语言。这些查询是由学习者(学习算法)向最低适足教师(MAT)提出的。MAT通常可以回答学习算法提出的两种类型的查询;成员查询和等价查询。学习算法可以分为两大类:增量学习算法和完全学习算法。同样,这些可以设计为1位学习或k位学习。现有的自动机学习算法在存在MAT时具有多项式(至少三次)的时间复杂度。因此,有时这些算法甚至无法学习大型复杂的软件系统。在这项研究工作中,我们将确定性有限自动机(DFA)学习的复杂性降低到下界(从三次形式到平方形式)。为此,我们基于John Hopcroft引入的DFA状态最小化的逆查询概念,通过逆查询(DLIQ)引入了一种高效的完整DFA学习算法。DLIQ算法在存在MAT的情况下的复杂度为0 (|Ps||F|+|Σ|N), MAT也可以回答反向查询。我们对该算法进行了理论分析,并给出了DLIQ算法的正确性和终止性证明。我们还通过实现一个评估框架来比较DLIQ和ID算法的性能。我们的研究结果表明,DLIQ算法在时间复杂度方面比ID算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DLIQ: A Deterministic Finite Automaton Learning Algorithm through Inverse Queries
Automaton learning has attained a renewed interest in many interesting areas of software engineering including formal verification, software testing and model inference. An automaton learning algorithm typically learns the regular language of a DFA with the help of queries. These queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT can generally answer two types of queries asked by the learning algorithm; membership queries and equivalence queries. Learning algorithms can be categorized into two broad categories: incremental and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k-bit learning. Existing automaton learning algorithms have polynomial (atleast cubic) time complexity in the presence of a MAT. Therefore, sometimes these algorithms even become fail to learn large complex software systems. In this research work, we have reduced the complexity of the Deterministic Finite Automaton (DFA) learning into lower bounds (from cubic to square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries (DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA. The DLIQ algorithm takes O(|Ps||F|+|Σ|N) complexity in the presence of a MAT which is also equipped to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing a proof correctness and termination of the DLIQ algorithm. We also compare the performance of DLIQ with ID algorithm by implementing an evaluation framework. Our results depict that DLIQ is more efficient than ID algorithm in terms of time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1