{"title":"一种基于逆查询的确定性有限自动机学习算法","authors":"Farah Haneef, M. Sindhu","doi":"10.5755/j01.itc.51.4.31394","DOIUrl":null,"url":null,"abstract":"Automaton learning has attained a renewed interest in many interesting areas of software engineering including formal verification, software testing and model inference. An automaton learning algorithm typically learns the regular language of a DFA with the help of queries. These queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT can generally answer two types of queries asked by the learning algorithm; membership queries and equivalence queries. Learning algorithms can be categorized into two broad categories: incremental and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k-bit learning. Existing automaton learning algorithms have polynomial (atleast cubic) time complexity in the presence of a MAT. Therefore, sometimes these algorithms even become fail to learn large complex software systems. In this research work, we have reduced the complexity of the Deterministic Finite Automaton (DFA) learning into lower bounds (from cubic to square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries (DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA. The DLIQ algorithm takes O(|Ps||F|+|Σ|N) complexity in the presence of a MAT which is also equipped to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing a proof correctness and termination of the DLIQ algorithm. We also compare the performance of DLIQ with ID algorithm by implementing an evaluation framework. Our results depict that DLIQ is more efficient than ID algorithm in terms of time complexity.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"10 1","pages":"611-624"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DLIQ: A Deterministic Finite Automaton Learning Algorithm through Inverse Queries\",\"authors\":\"Farah Haneef, M. Sindhu\",\"doi\":\"10.5755/j01.itc.51.4.31394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automaton learning has attained a renewed interest in many interesting areas of software engineering including formal verification, software testing and model inference. An automaton learning algorithm typically learns the regular language of a DFA with the help of queries. These queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT can generally answer two types of queries asked by the learning algorithm; membership queries and equivalence queries. Learning algorithms can be categorized into two broad categories: incremental and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k-bit learning. Existing automaton learning algorithms have polynomial (atleast cubic) time complexity in the presence of a MAT. Therefore, sometimes these algorithms even become fail to learn large complex software systems. In this research work, we have reduced the complexity of the Deterministic Finite Automaton (DFA) learning into lower bounds (from cubic to square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries (DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA. The DLIQ algorithm takes O(|Ps||F|+|Σ|N) complexity in the presence of a MAT which is also equipped to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing a proof correctness and termination of the DLIQ algorithm. We also compare the performance of DLIQ with ID algorithm by implementing an evaluation framework. Our results depict that DLIQ is more efficient than ID algorithm in terms of time complexity.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"10 1\",\"pages\":\"611-624\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.51.4.31394\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.51.4.31394","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
DLIQ: A Deterministic Finite Automaton Learning Algorithm through Inverse Queries
Automaton learning has attained a renewed interest in many interesting areas of software engineering including formal verification, software testing and model inference. An automaton learning algorithm typically learns the regular language of a DFA with the help of queries. These queries are posed by the learner (Learning Algorithm) to a Minimally Adequate Teacher (MAT). The MAT can generally answer two types of queries asked by the learning algorithm; membership queries and equivalence queries. Learning algorithms can be categorized into two broad categories: incremental and complete learning algorithms. Likewise, these can be designed for 1-bit learning or k-bit learning. Existing automaton learning algorithms have polynomial (atleast cubic) time complexity in the presence of a MAT. Therefore, sometimes these algorithms even become fail to learn large complex software systems. In this research work, we have reduced the complexity of the Deterministic Finite Automaton (DFA) learning into lower bounds (from cubic to square form). For this, we introduce an efficient complete DFA learning algorithm through Inverse Queries (DLIQ) based on the concept of inverse queries introduced by John Hopcroft for state minimization of a DFA. The DLIQ algorithm takes O(|Ps||F|+|Σ|N) complexity in the presence of a MAT which is also equipped to answer inverse queries. We give a theoretical analysis of the proposed algorithm along with providing a proof correctness and termination of the DLIQ algorithm. We also compare the performance of DLIQ with ID algorithm by implementing an evaluation framework. Our results depict that DLIQ is more efficient than ID algorithm in terms of time complexity.
期刊介绍:
Periodical journal covers a wide field of computer science and control systems related problems including:
-Software and hardware engineering;
-Management systems engineering;
-Information systems and databases;
-Embedded systems;
-Physical systems modelling and application;
-Computer networks and cloud computing;
-Data visualization;
-Human-computer interface;
-Computer graphics, visual analytics, and multimedia systems.