基于航拍平台获取的RGB图像的高通量植物高度估计:一种基于3D点云的方法

Xun Li, Geoff Bull, R. Coe, Sakda Eamkulworapong, J. Scarrow, Michael Salim, M. Schaefer, X. Sirault
{"title":"基于航拍平台获取的RGB图像的高通量植物高度估计:一种基于3D点云的方法","authors":"Xun Li, Geoff Bull, R. Coe, Sakda Eamkulworapong, J. Scarrow, Michael Salim, M. Schaefer, X. Sirault","doi":"10.1109/DICTA47822.2019.8945911","DOIUrl":null,"url":null,"abstract":"With the development of computer vision technologies, using images acquired by aerial platforms to measure large scale agricultural fields has been increasingly studied. In order to provide a more time efficient, light weight and low cost solution, in this paper we present a highly automated processing pipeline that performs plant height estimation based on a dense point cloud generated from aerial RGB images, requiring only a single flight. A previously acquired terrain model is not required as input. The process extracts a segmented plant layer and bare ground layer. Ground height estimation achieves sub 10cm accuracy. High throughput plant height estimation has been performed and results are compared with LiDAR based measurements.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"42 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Throughput Plant Height Estimation from RGB Images Acquired with Aerial Platforms: A 3D Point Cloud Based Approach\",\"authors\":\"Xun Li, Geoff Bull, R. Coe, Sakda Eamkulworapong, J. Scarrow, Michael Salim, M. Schaefer, X. Sirault\",\"doi\":\"10.1109/DICTA47822.2019.8945911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of computer vision technologies, using images acquired by aerial platforms to measure large scale agricultural fields has been increasingly studied. In order to provide a more time efficient, light weight and low cost solution, in this paper we present a highly automated processing pipeline that performs plant height estimation based on a dense point cloud generated from aerial RGB images, requiring only a single flight. A previously acquired terrain model is not required as input. The process extracts a segmented plant layer and bare ground layer. Ground height estimation achieves sub 10cm accuracy. High throughput plant height estimation has been performed and results are compared with LiDAR based measurements.\",\"PeriodicalId\":6696,\"journal\":{\"name\":\"2019 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"42 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA47822.2019.8945911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着计算机视觉技术的发展,利用航空平台获取的图像对大尺度农田进行测量的研究越来越多。为了提供更省时、轻量和低成本的解决方案,本文提出了一种高度自动化的处理管道,该管道基于由航空RGB图像生成的密集点云执行植物高度估计,只需要一次飞行。不需要先前获得的地形模型作为输入。该工艺提取了分段的植物层和裸露的地面层。地面高度估计精度达到10cm以下。进行了高通量植物高度估计,并将结果与基于激光雷达的测量结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Throughput Plant Height Estimation from RGB Images Acquired with Aerial Platforms: A 3D Point Cloud Based Approach
With the development of computer vision technologies, using images acquired by aerial platforms to measure large scale agricultural fields has been increasingly studied. In order to provide a more time efficient, light weight and low cost solution, in this paper we present a highly automated processing pipeline that performs plant height estimation based on a dense point cloud generated from aerial RGB images, requiring only a single flight. A previously acquired terrain model is not required as input. The process extracts a segmented plant layer and bare ground layer. Ground height estimation achieves sub 10cm accuracy. High throughput plant height estimation has been performed and results are compared with LiDAR based measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1