{"title":"Ar-CO-CO2气固反应对Fe-C合金带材脱碳的影响","authors":"Meijie Zhou, L. Ai, Lu-kuo Hong, Cai-jiao Sun, Yuqing Zhou, Fanjun Meng","doi":"10.1051/metal/2021092","DOIUrl":null,"url":null,"abstract":"The gas–solid reaction decarburisation of cast iron strips is a direct steel production method with low production costs. In this study, the decarburisation kinetics of Fe-C alloy strips in an Ar-CO-CO2 atmosphere were investigated. Fe-C alloy strips with 4.2 wt.% C and different thicknesses (1, 1.5, and 2 mm) were used for the decarburisation experiments under temperatures of 1293, 1353, and 1413 K. The results indicate that, under appropriate mixed gas conditions, rapid decarburisation can be achieved. With an increase in the decarburisation temperature, the decarburisation rate increases significantly. Under the same decarburisation temperature and time, thinner Fe-C alloy strips exhibit a better decarburisation effect. The decarburisation process includes three rate-limiting stages, namely gas and surface reaction, carbon diffusion, and cementite decomposition. The microstructure of the decarburised strips comprises a complete decarburised layer and a partial decarburised layer, and the thickness of the complete decarburised layer increases with decarburisation time. The decarburisation of the Fe-C alloy strip is an apparent first-order reaction with an activation energy of 124.7 kJ ∙ mol−1, and the activation energy for the growth of the complete decarburised layer is 132.3 kJ ∙ mol−1. The results of this study can help develop more efficient and cost-effective steel production methods.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"118 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decarburisation of Fe-C alloy strips by gas–solid reaction in Ar-CO-CO2\",\"authors\":\"Meijie Zhou, L. Ai, Lu-kuo Hong, Cai-jiao Sun, Yuqing Zhou, Fanjun Meng\",\"doi\":\"10.1051/metal/2021092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gas–solid reaction decarburisation of cast iron strips is a direct steel production method with low production costs. In this study, the decarburisation kinetics of Fe-C alloy strips in an Ar-CO-CO2 atmosphere were investigated. Fe-C alloy strips with 4.2 wt.% C and different thicknesses (1, 1.5, and 2 mm) were used for the decarburisation experiments under temperatures of 1293, 1353, and 1413 K. The results indicate that, under appropriate mixed gas conditions, rapid decarburisation can be achieved. With an increase in the decarburisation temperature, the decarburisation rate increases significantly. Under the same decarburisation temperature and time, thinner Fe-C alloy strips exhibit a better decarburisation effect. The decarburisation process includes three rate-limiting stages, namely gas and surface reaction, carbon diffusion, and cementite decomposition. The microstructure of the decarburised strips comprises a complete decarburised layer and a partial decarburised layer, and the thickness of the complete decarburised layer increases with decarburisation time. The decarburisation of the Fe-C alloy strip is an apparent first-order reaction with an activation energy of 124.7 kJ ∙ mol−1, and the activation energy for the growth of the complete decarburised layer is 132.3 kJ ∙ mol−1. The results of this study can help develop more efficient and cost-effective steel production methods.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021092\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021092","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Decarburisation of Fe-C alloy strips by gas–solid reaction in Ar-CO-CO2
The gas–solid reaction decarburisation of cast iron strips is a direct steel production method with low production costs. In this study, the decarburisation kinetics of Fe-C alloy strips in an Ar-CO-CO2 atmosphere were investigated. Fe-C alloy strips with 4.2 wt.% C and different thicknesses (1, 1.5, and 2 mm) were used for the decarburisation experiments under temperatures of 1293, 1353, and 1413 K. The results indicate that, under appropriate mixed gas conditions, rapid decarburisation can be achieved. With an increase in the decarburisation temperature, the decarburisation rate increases significantly. Under the same decarburisation temperature and time, thinner Fe-C alloy strips exhibit a better decarburisation effect. The decarburisation process includes three rate-limiting stages, namely gas and surface reaction, carbon diffusion, and cementite decomposition. The microstructure of the decarburised strips comprises a complete decarburised layer and a partial decarburised layer, and the thickness of the complete decarburised layer increases with decarburisation time. The decarburisation of the Fe-C alloy strip is an apparent first-order reaction with an activation energy of 124.7 kJ ∙ mol−1, and the activation energy for the growth of the complete decarburised layer is 132.3 kJ ∙ mol−1. The results of this study can help develop more efficient and cost-effective steel production methods.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.