M. Kawamura, H. Kuwae, T. Kamibayashi, J. Oshima, T. Kasahara, S. Shoji, J. Mizuno
{"title":"采用深蓝液体有机半导体背光的RGB全液体微流控量子点发光二极管","authors":"M. Kawamura, H. Kuwae, T. Kamibayashi, J. Oshima, T. Kasahara, S. Shoji, J. Mizuno","doi":"10.1109/MEMS46641.2020.9056181","DOIUrl":null,"url":null,"abstract":"We developed an RGB microfluidic quantum dots light-emitting diode (QLED). All emitter and luminophores were liquid materials, including liquid organic semiconductor (LOS) as a backlight and quantum dots (QDs) solutions for high-color-purity luminophores. A deep-blue LOS backlight was used to excite QDs solutions. RGB lights were achieved with narrow full width at half maximum (FWHM) of 26.2 nm (green) and 25.0 nm (red), and were close to the boundary of CIE color space. The color purity of the RGB microfluidic QLED was the highest in that of ever reported LOS based devices. The proposed device is expected to provide future flexible displays with high-color-purity.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"20 1 1","pages":"1238-1241"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RGB all Liquid-Based Microfluidic Quantum Dots Light-Emitting Diodes Using Deep-Blue Liquid Organic Semiconductor Backlight\",\"authors\":\"M. Kawamura, H. Kuwae, T. Kamibayashi, J. Oshima, T. Kasahara, S. Shoji, J. Mizuno\",\"doi\":\"10.1109/MEMS46641.2020.9056181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed an RGB microfluidic quantum dots light-emitting diode (QLED). All emitter and luminophores were liquid materials, including liquid organic semiconductor (LOS) as a backlight and quantum dots (QDs) solutions for high-color-purity luminophores. A deep-blue LOS backlight was used to excite QDs solutions. RGB lights were achieved with narrow full width at half maximum (FWHM) of 26.2 nm (green) and 25.0 nm (red), and were close to the boundary of CIE color space. The color purity of the RGB microfluidic QLED was the highest in that of ever reported LOS based devices. The proposed device is expected to provide future flexible displays with high-color-purity.\",\"PeriodicalId\":6776,\"journal\":{\"name\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"20 1 1\",\"pages\":\"1238-1241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS46641.2020.9056181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RGB all Liquid-Based Microfluidic Quantum Dots Light-Emitting Diodes Using Deep-Blue Liquid Organic Semiconductor Backlight
We developed an RGB microfluidic quantum dots light-emitting diode (QLED). All emitter and luminophores were liquid materials, including liquid organic semiconductor (LOS) as a backlight and quantum dots (QDs) solutions for high-color-purity luminophores. A deep-blue LOS backlight was used to excite QDs solutions. RGB lights were achieved with narrow full width at half maximum (FWHM) of 26.2 nm (green) and 25.0 nm (red), and were close to the boundary of CIE color space. The color purity of the RGB microfluidic QLED was the highest in that of ever reported LOS based devices. The proposed device is expected to provide future flexible displays with high-color-purity.