贝叶斯分位数回归的参数估计

D. Dichandra, I. Fithriani, S. Nurrohmah
{"title":"贝叶斯分位数回归的参数估计","authors":"D. Dichandra, I. Fithriani, S. Nurrohmah","doi":"10.1063/5.0059103","DOIUrl":null,"url":null,"abstract":"Quantile regression is a regression method that modelling a relationship between quantile of variable response and one or more variable predictors. Quantile regression has advantages that linear regression does not have; it is robust against outliers and can model heteroscedasticity data. The parameters of quantile regression can be estimated using the Bayesian method. The Bayesian method is a data analysis tool derived based on the Bayesian inference principle. Bayesian inference is the process of studying data analysis inductively with the Bayes theorem. To estimate regression parameters with Bayesian inference, it is necessary to find the posterior distribution of the regression parameters where the posterior distribution is proportional to the product of the prior distribution and its likelihood function. Since the calculation of the posterior distribution analytically is difficult to do if more parameters are estimated, the Markov Chain Monte Carlo (MCMC) method is proposed. The use of the Bayesian method in quantile regression has advantages, namely the use of MCMC has the advantages of obtaining sample parameter values from an unknown posterior distribution, using computationally efficient, and easy to implement. Yu and Moyeed (2001) introduced Bayesian quantile regression using the likelihood function of errors with an Asymmetric Laplace Distribution (ALD) and found that minimizing parameter estimates in quantile regression is the same as maximizing the likelihood function of errors with an Asymmetric Laplace Distribution (ALD). The method used to estimate quantile regression parameters is Gibbs sampling from the ALD, which is a combination of the exponential and normal distributions. To find the parameters of the regression model by sampling the posterior distribution found in this thesis. The results obtained from Gibbs sampling are a sample sequence of estimated parameters. After obtaining the sample sequences, the sample lines are averaged to obtain an estimated regression parameter. The case study in this thesis discusses the effect of risk factors from motor vehicle insurance customers on the size of claims submitted by customers.","PeriodicalId":20561,"journal":{"name":"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameter estimation of Bayesian quantile regression\",\"authors\":\"D. Dichandra, I. Fithriani, S. Nurrohmah\",\"doi\":\"10.1063/5.0059103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantile regression is a regression method that modelling a relationship between quantile of variable response and one or more variable predictors. Quantile regression has advantages that linear regression does not have; it is robust against outliers and can model heteroscedasticity data. The parameters of quantile regression can be estimated using the Bayesian method. The Bayesian method is a data analysis tool derived based on the Bayesian inference principle. Bayesian inference is the process of studying data analysis inductively with the Bayes theorem. To estimate regression parameters with Bayesian inference, it is necessary to find the posterior distribution of the regression parameters where the posterior distribution is proportional to the product of the prior distribution and its likelihood function. Since the calculation of the posterior distribution analytically is difficult to do if more parameters are estimated, the Markov Chain Monte Carlo (MCMC) method is proposed. The use of the Bayesian method in quantile regression has advantages, namely the use of MCMC has the advantages of obtaining sample parameter values from an unknown posterior distribution, using computationally efficient, and easy to implement. Yu and Moyeed (2001) introduced Bayesian quantile regression using the likelihood function of errors with an Asymmetric Laplace Distribution (ALD) and found that minimizing parameter estimates in quantile regression is the same as maximizing the likelihood function of errors with an Asymmetric Laplace Distribution (ALD). The method used to estimate quantile regression parameters is Gibbs sampling from the ALD, which is a combination of the exponential and normal distributions. To find the parameters of the regression model by sampling the posterior distribution found in this thesis. The results obtained from Gibbs sampling are a sample sequence of estimated parameters. After obtaining the sample sequences, the sample lines are averaged to obtain an estimated regression parameter. The case study in this thesis discusses the effect of risk factors from motor vehicle insurance customers on the size of claims submitted by customers.\",\"PeriodicalId\":20561,\"journal\":{\"name\":\"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0059103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0059103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分位数回归是一种模拟变量响应的分位数与一个或多个变量预测因子之间关系的回归方法。分位数回归具有线性回归所不具备的优点;它对异常值具有鲁棒性,可以对异方差数据进行建模。分位数回归的参数可以用贝叶斯方法估计。贝叶斯方法是基于贝叶斯推理原理衍生出来的一种数据分析工具。贝叶斯推理是运用贝叶斯定理对数据分析进行归纳研究的过程。用贝叶斯推理估计回归参数,需要找到回归参数的后验分布,后验分布与先验分布及其似然函数的乘积成正比。由于估计的参数较多,后验分布难以解析计算,提出了马尔可夫链蒙特卡罗(MCMC)方法。在分位数回归中使用贝叶斯方法有其优点,即使用MCMC的优点是从未知的后验分布中获取样本参数值,使用计算效率高,易于实现。Yu和Moyeed(2001)利用误差的非对称拉普拉斯分布(ALD)似然函数引入贝叶斯分位数回归,发现分位数回归中参数估计的最小化与误差的非对称拉普拉斯分布(ALD)似然函数的最大化是相同的。分位数回归参数的估计方法是采用指数分布和正态分布相结合的ALD的Gibbs抽样方法。通过对本文发现的后验分布进行抽样,求出回归模型的参数。吉布斯抽样得到的结果是估计参数的样本序列。得到样本序列后,对样本线进行平均,得到估计的回归参数。本文通过案例研究,探讨了机动车保险客户风险因素对客户索赔金额的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter estimation of Bayesian quantile regression
Quantile regression is a regression method that modelling a relationship between quantile of variable response and one or more variable predictors. Quantile regression has advantages that linear regression does not have; it is robust against outliers and can model heteroscedasticity data. The parameters of quantile regression can be estimated using the Bayesian method. The Bayesian method is a data analysis tool derived based on the Bayesian inference principle. Bayesian inference is the process of studying data analysis inductively with the Bayes theorem. To estimate regression parameters with Bayesian inference, it is necessary to find the posterior distribution of the regression parameters where the posterior distribution is proportional to the product of the prior distribution and its likelihood function. Since the calculation of the posterior distribution analytically is difficult to do if more parameters are estimated, the Markov Chain Monte Carlo (MCMC) method is proposed. The use of the Bayesian method in quantile regression has advantages, namely the use of MCMC has the advantages of obtaining sample parameter values from an unknown posterior distribution, using computationally efficient, and easy to implement. Yu and Moyeed (2001) introduced Bayesian quantile regression using the likelihood function of errors with an Asymmetric Laplace Distribution (ALD) and found that minimizing parameter estimates in quantile regression is the same as maximizing the likelihood function of errors with an Asymmetric Laplace Distribution (ALD). The method used to estimate quantile regression parameters is Gibbs sampling from the ALD, which is a combination of the exponential and normal distributions. To find the parameters of the regression model by sampling the posterior distribution found in this thesis. The results obtained from Gibbs sampling are a sample sequence of estimated parameters. After obtaining the sample sequences, the sample lines are averaged to obtain an estimated regression parameter. The case study in this thesis discusses the effect of risk factors from motor vehicle insurance customers on the size of claims submitted by customers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Singular Integral Operators, Quantitative Flatness, and Boundary Problems Mirzakhani’s Curve Counting and Geodesic Currents The conception of national nuclear emergency preparedness system from the state defense perspective Computer security regulation for nuclear installation: A suggestion Optimal reinsurance combination of quota-share and stop-loss reinsurance based on conditional-tail-expectation (CTE) optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1