从模拟中预测合理的人类浦肯野网络形态

M. Lange, T. Lassila, Alejandro F Frangi
{"title":"从模拟中预测合理的人类浦肯野网络形态","authors":"M. Lange, T. Lassila, Alejandro F Frangi","doi":"10.22489/cinc.2019.168","DOIUrl":null,"url":null,"abstract":"The Purkinje network (PN) gains more clinically importance as it becomes target for pacing in rate control and defibrillation. However, our understanding of the PN morphology arises from animal experiments, which might not transfer to humans. Therefore, we propose an automated computer simulation predicting physiological PN morphologies depending on the heart shape. It starts by generating virtual heart shapes from a statistical shape atlas and generates virtual PNs on the endocardial surface. For the combined virtual models the eikonal equation is solved to estimate the local activation times throughout the myocardium, which then feed forward to an simulation of the 12-lead surface ECG. From the simulated ECG the QRS-complex is compared against a healthy standard QRS-complex ,which allows to estimate how physiological a PN morphology is. In our model, only bundle branch bifurcation points near the base or near the apex result in physiological QRS wave forms. For the right bundle, more physiological QRS waves can be obtained when the branching point is at the apex. Only a minor dependency of the ECG on the heart shape is found. However, a strong correlation between the bundle branch bifurcation points themselves is observed.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Plausible Human Purkinje Network Morphology from Simulations\",\"authors\":\"M. Lange, T. Lassila, Alejandro F Frangi\",\"doi\":\"10.22489/cinc.2019.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Purkinje network (PN) gains more clinically importance as it becomes target for pacing in rate control and defibrillation. However, our understanding of the PN morphology arises from animal experiments, which might not transfer to humans. Therefore, we propose an automated computer simulation predicting physiological PN morphologies depending on the heart shape. It starts by generating virtual heart shapes from a statistical shape atlas and generates virtual PNs on the endocardial surface. For the combined virtual models the eikonal equation is solved to estimate the local activation times throughout the myocardium, which then feed forward to an simulation of the 12-lead surface ECG. From the simulated ECG the QRS-complex is compared against a healthy standard QRS-complex ,which allows to estimate how physiological a PN morphology is. In our model, only bundle branch bifurcation points near the base or near the apex result in physiological QRS wave forms. For the right bundle, more physiological QRS waves can be obtained when the branching point is at the apex. Only a minor dependency of the ECG on the heart shape is found. However, a strong correlation between the bundle branch bifurcation points themselves is observed.\",\"PeriodicalId\":6716,\"journal\":{\"name\":\"2019 Computing in Cardiology Conference (CinC)\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/cinc.2019.168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2019.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当浦肯野神经网络(PN)成为心率控制和除颤的起搏靶点时,它在临床上的重要性越来越大。然而,我们对PN形态的理解来自动物实验,这可能不会转移到人类。因此,我们提出了一个自动计算机模拟预测生理PN形态取决于心脏的形状。它首先从统计形状图谱中生成虚拟心脏形状,然后在心内膜表面生成虚拟pn。对于组合的虚拟模型,求解eikonal方程来估计整个心肌的局部激活时间,然后将其前馈到12导联表面心电图的模拟中。从模拟心电图中,将qrs复合物与健康标准qrs复合物进行比较,从而可以估计PN形态的生理性程度。在我们的模型中,只有靠近基部或靠近顶点的束枝分叉点才会产生生理QRS波形。对于右束,当分支点位于顶端时,可以获得更多的生理QRS波。心电图对心脏形状的依赖性很小。然而,束枝分岔点本身之间存在很强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Plausible Human Purkinje Network Morphology from Simulations
The Purkinje network (PN) gains more clinically importance as it becomes target for pacing in rate control and defibrillation. However, our understanding of the PN morphology arises from animal experiments, which might not transfer to humans. Therefore, we propose an automated computer simulation predicting physiological PN morphologies depending on the heart shape. It starts by generating virtual heart shapes from a statistical shape atlas and generates virtual PNs on the endocardial surface. For the combined virtual models the eikonal equation is solved to estimate the local activation times throughout the myocardium, which then feed forward to an simulation of the 12-lead surface ECG. From the simulated ECG the QRS-complex is compared against a healthy standard QRS-complex ,which allows to estimate how physiological a PN morphology is. In our model, only bundle branch bifurcation points near the base or near the apex result in physiological QRS wave forms. For the right bundle, more physiological QRS waves can be obtained when the branching point is at the apex. Only a minor dependency of the ECG on the heart shape is found. However, a strong correlation between the bundle branch bifurcation points themselves is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Reducing the Number of Leads from Body Surface Potential Mapping in Computer Models of Atrial Arrhythmias Autonomic Nervous System Response to Heat Stress Exposure by Means of Heart Rate Variability Automatic Emotions Assessment Using Heart Rate Variability Analysis and 2D Regression Model of Emotions A New Graphical Method for Reporting Performance Results of a Diagnostic Test A Low Dimensional Algorithm for Detection of Sepsis from Electronic Medical Record Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1