{"title":"基于频域特征映射选择性积分的视觉显著性","authors":"Kitae Park, Jeong Ho Lee, Y. Moon","doi":"10.1109/ICCE.2013.6486787","DOIUrl":null,"url":null,"abstract":"In this paper, an automatic method for extracting visual saliency based on selective integration of feature maps in frequency domain is proposed. Feature maps are calculated by measuring the Bayes spectral entropy. In order to extract visual saliency effectively, feature maps are first generated from three images separated into Y, Cb, Cr channels, respectively. Then, by selectively integrating feature maps, visual saliency is finally extracted. Experimental results have shown that the proposed method obtains good performance of visual saliency under various environments containing multiple objects and cluttered backgrounds in natural images.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"26 1","pages":"43-44"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual saliency based on selective integration of feature maps in frequency domain\",\"authors\":\"Kitae Park, Jeong Ho Lee, Y. Moon\",\"doi\":\"10.1109/ICCE.2013.6486787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an automatic method for extracting visual saliency based on selective integration of feature maps in frequency domain is proposed. Feature maps are calculated by measuring the Bayes spectral entropy. In order to extract visual saliency effectively, feature maps are first generated from three images separated into Y, Cb, Cr channels, respectively. Then, by selectively integrating feature maps, visual saliency is finally extracted. Experimental results have shown that the proposed method obtains good performance of visual saliency under various environments containing multiple objects and cluttered backgrounds in natural images.\",\"PeriodicalId\":6432,\"journal\":{\"name\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"26 1\",\"pages\":\"43-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2013.6486787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual saliency based on selective integration of feature maps in frequency domain
In this paper, an automatic method for extracting visual saliency based on selective integration of feature maps in frequency domain is proposed. Feature maps are calculated by measuring the Bayes spectral entropy. In order to extract visual saliency effectively, feature maps are first generated from three images separated into Y, Cb, Cr channels, respectively. Then, by selectively integrating feature maps, visual saliency is finally extracted. Experimental results have shown that the proposed method obtains good performance of visual saliency under various environments containing multiple objects and cluttered backgrounds in natural images.