{"title":"团体聚会的位置隐私","authors":"A. K. M. M. R. Khan, L. Kulik, E. Tanin","doi":"10.1145/2996913.2996966","DOIUrl":null,"url":null,"abstract":"A Group Nearest Neighbor (GNN) query finds a point of interest (POI) that minimizes the aggregate distance for a group of users. In current systems, users have to reveal their exact, often sensitive locations to issue a GNN query. This calls for private GNN queries. However, existing methods for private GNN queries either are computationally too expensive for mobile phones or cannot resist sophisticated attacks. Our approach can efficiently and effectively process an important variant of private GNN queries: queries that minimize the maximum distance for any user in the group. To achieve high efficiency we develop a distributed multi-party private protocol to compute the maximum function. Our method exploits geometric constraints to prune POIs and avoids unnecessary data disclosure. In contrast to current state of the art multi-party private protocols, our proposed protocol does not rely on cryptography and has a fast runtime. Importantly, a user does not have to provide a location directly, even in imprecise form.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Location privacy for group meetups\",\"authors\":\"A. K. M. M. R. Khan, L. Kulik, E. Tanin\",\"doi\":\"10.1145/2996913.2996966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Group Nearest Neighbor (GNN) query finds a point of interest (POI) that minimizes the aggregate distance for a group of users. In current systems, users have to reveal their exact, often sensitive locations to issue a GNN query. This calls for private GNN queries. However, existing methods for private GNN queries either are computationally too expensive for mobile phones or cannot resist sophisticated attacks. Our approach can efficiently and effectively process an important variant of private GNN queries: queries that minimize the maximum distance for any user in the group. To achieve high efficiency we develop a distributed multi-party private protocol to compute the maximum function. Our method exploits geometric constraints to prune POIs and avoids unnecessary data disclosure. In contrast to current state of the art multi-party private protocols, our proposed protocol does not rely on cryptography and has a fast runtime. Importantly, a user does not have to provide a location directly, even in imprecise form.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
组最近邻(Group Nearest Neighbor, GNN)查询查找一个兴趣点(point of interest, POI),使一组用户的总距离最小。在目前的系统中,用户必须透露他们的准确位置,通常是敏感的位置,才能发出GNN查询。这将调用私有GNN查询。然而,现有的私人GNN查询方法要么对移动电话来说计算成本太高,要么无法抵御复杂的攻击。我们的方法可以高效地处理私有GNN查询的一个重要变体:最小化组中任何用户的最大距离的查询。为了提高效率,我们开发了一个分布式多方私有协议来计算最大函数。我们的方法利用几何约束来修剪poi并避免不必要的数据泄露。与当前最先进的多方私有协议相比,我们提出的协议不依赖于密码学,并且具有快速的运行时间。重要的是,用户不必直接提供位置,即使是不精确的形式。
A Group Nearest Neighbor (GNN) query finds a point of interest (POI) that minimizes the aggregate distance for a group of users. In current systems, users have to reveal their exact, often sensitive locations to issue a GNN query. This calls for private GNN queries. However, existing methods for private GNN queries either are computationally too expensive for mobile phones or cannot resist sophisticated attacks. Our approach can efficiently and effectively process an important variant of private GNN queries: queries that minimize the maximum distance for any user in the group. To achieve high efficiency we develop a distributed multi-party private protocol to compute the maximum function. Our method exploits geometric constraints to prune POIs and avoids unnecessary data disclosure. In contrast to current state of the art multi-party private protocols, our proposed protocol does not rely on cryptography and has a fast runtime. Importantly, a user does not have to provide a location directly, even in imprecise form.