{"title":"基于站点的共享电动车配置中奖励用户与员工的协调优化","authors":"Lan Yu, Jiaming Liu, Zhuo Sun","doi":"10.34768/amcs-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract To solve the mismatch between the supply and demand of shared electric vehicles (SEVs) caused by the uneven distribution of SEVs in space and time, an SEV relocating optimization model is designed based on a reward mechanism. The aim of the model is to achieve a cost-minimized rebalancing of the SEV system. Users are guided to attend the relocating SEVs by a reward mechanism, and employees can continuously relocate multiple SEVs before returning to the supply site. The optimization problem is solved by a heuristic column generation algorithm, in which the driving routes of employees are added into a pool by column generation iteratively. In the pricing subproblem of column generation, the Shuffled Complex Evolution–University of Arizona (SCE–UA) is designed to generate a driving route. The proposed model is verified with the actual data of the Dalian city. The results show that our model can reduce the total cost of relocating and improve the service efficiency.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"8 1","pages":"523 - 535"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Coordinated Optimization of Rewarded Users and Employees in Relocating Station–Based Shared Electric Vehicles\",\"authors\":\"Lan Yu, Jiaming Liu, Zhuo Sun\",\"doi\":\"10.34768/amcs-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To solve the mismatch between the supply and demand of shared electric vehicles (SEVs) caused by the uneven distribution of SEVs in space and time, an SEV relocating optimization model is designed based on a reward mechanism. The aim of the model is to achieve a cost-minimized rebalancing of the SEV system. Users are guided to attend the relocating SEVs by a reward mechanism, and employees can continuously relocate multiple SEVs before returning to the supply site. The optimization problem is solved by a heuristic column generation algorithm, in which the driving routes of employees are added into a pool by column generation iteratively. In the pricing subproblem of column generation, the Shuffled Complex Evolution–University of Arizona (SCE–UA) is designed to generate a driving route. The proposed model is verified with the actual data of the Dalian city. The results show that our model can reduce the total cost of relocating and improve the service efficiency.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"8 1\",\"pages\":\"523 - 535\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0037\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0037","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
摘要为解决由于共享电动汽车在空间和时间上分布不均匀而导致的共享电动汽车供需不匹配问题,设计了基于奖励机制的共享电动汽车配置优化模型。该模型的目标是实现SEV系统的成本最小化再平衡。通过奖励机制引导用户参加sev的搬迁,员工可以连续搬迁多个sev,然后返回供应现场。采用启发式列生成算法,迭代生成列,将员工驾驶路线添加到池中,求解优化问题。在列生成的定价子问题中,设计了shuffle Complex Evolution-University of Arizona (SCE-UA)算法来生成一条行车路线。用大连市的实际数据对该模型进行了验证。结果表明,该模型能够降低企业搬迁总成本,提高服务效率。
A Coordinated Optimization of Rewarded Users and Employees in Relocating Station–Based Shared Electric Vehicles
Abstract To solve the mismatch between the supply and demand of shared electric vehicles (SEVs) caused by the uneven distribution of SEVs in space and time, an SEV relocating optimization model is designed based on a reward mechanism. The aim of the model is to achieve a cost-minimized rebalancing of the SEV system. Users are guided to attend the relocating SEVs by a reward mechanism, and employees can continuously relocate multiple SEVs before returning to the supply site. The optimization problem is solved by a heuristic column generation algorithm, in which the driving routes of employees are added into a pool by column generation iteratively. In the pricing subproblem of column generation, the Shuffled Complex Evolution–University of Arizona (SCE–UA) is designed to generate a driving route. The proposed model is verified with the actual data of the Dalian city. The results show that our model can reduce the total cost of relocating and improve the service efficiency.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.