{"title":"HL-LHC ATLAS条形端盖母线带设计","authors":"F. Carrió, J. Bernabeu, V. Cindro, A. Gorišek","doi":"10.1109/NSS/MIC42677.2020.9508050","DOIUrl":null,"url":null,"abstract":"The ATLAS Phase-II Upgrade will replace the Inner detector with a new all-silicon Inner Tracker (ITk) to accommodate the radiation damage and track density expected at the High-Luminosity LHC (HL-LHC). The all-silicon ITk for the HL-LHC consists of a pixel detector with 5 barrel layers and multiple forward disks at a small radius, and a strip tracking detector at the outermost part with 4 barrel layers and 6-end-cap disks on each side. This contribution presents the design of the flexible circuit (bus tape) for the local support structures of the end-cap region of the strip detector, called petals. The bus tapes provide the electrical interface to common services for all the on-board subsystems including power, control and data interfaces. Connections to external services outside of the petals are carried out through the End-of-Structure (EoS) card using optical fibres and copper wires. The bus tapes are manufactured as a 2-layer printed circuit board using polyimide and adhesive Kapton films, with a total thickness of 185 μm and a total length of 60 cm. The layout design has been focused on achieving good signal and power integrity while keeping low mass and low thermal resistance. A total of 768 end-cap bus tapes are needed between 2021 and 2022 for the production of 384 petals with 6,912 modules, where each end-cap disk will consist of 32 petals.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Bus Tapes for the ATLAS Strip End-Cap at the HL-LHC\",\"authors\":\"F. Carrió, J. Bernabeu, V. Cindro, A. Gorišek\",\"doi\":\"10.1109/NSS/MIC42677.2020.9508050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ATLAS Phase-II Upgrade will replace the Inner detector with a new all-silicon Inner Tracker (ITk) to accommodate the radiation damage and track density expected at the High-Luminosity LHC (HL-LHC). The all-silicon ITk for the HL-LHC consists of a pixel detector with 5 barrel layers and multiple forward disks at a small radius, and a strip tracking detector at the outermost part with 4 barrel layers and 6-end-cap disks on each side. This contribution presents the design of the flexible circuit (bus tape) for the local support structures of the end-cap region of the strip detector, called petals. The bus tapes provide the electrical interface to common services for all the on-board subsystems including power, control and data interfaces. Connections to external services outside of the petals are carried out through the End-of-Structure (EoS) card using optical fibres and copper wires. The bus tapes are manufactured as a 2-layer printed circuit board using polyimide and adhesive Kapton films, with a total thickness of 185 μm and a total length of 60 cm. The layout design has been focused on achieving good signal and power integrity while keeping low mass and low thermal resistance. A total of 768 end-cap bus tapes are needed between 2021 and 2022 for the production of 384 petals with 6,912 modules, where each end-cap disk will consist of 32 petals.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"3 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9508050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9508050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Bus Tapes for the ATLAS Strip End-Cap at the HL-LHC
The ATLAS Phase-II Upgrade will replace the Inner detector with a new all-silicon Inner Tracker (ITk) to accommodate the radiation damage and track density expected at the High-Luminosity LHC (HL-LHC). The all-silicon ITk for the HL-LHC consists of a pixel detector with 5 barrel layers and multiple forward disks at a small radius, and a strip tracking detector at the outermost part with 4 barrel layers and 6-end-cap disks on each side. This contribution presents the design of the flexible circuit (bus tape) for the local support structures of the end-cap region of the strip detector, called petals. The bus tapes provide the electrical interface to common services for all the on-board subsystems including power, control and data interfaces. Connections to external services outside of the petals are carried out through the End-of-Structure (EoS) card using optical fibres and copper wires. The bus tapes are manufactured as a 2-layer printed circuit board using polyimide and adhesive Kapton films, with a total thickness of 185 μm and a total length of 60 cm. The layout design has been focused on achieving good signal and power integrity while keeping low mass and low thermal resistance. A total of 768 end-cap bus tapes are needed between 2021 and 2022 for the production of 384 petals with 6,912 modules, where each end-cap disk will consist of 32 petals.