基于不同模型的多尺度流态及驱动力分析——以乌河流域为例

IF 4.3 Q2 Environmental Science Journal of Water Supply Research and Technology-aqua Pub Date : 2023-08-08 DOI:10.2166/ws.2023.199
Hongxiang Wang, Siyuan Cheng, N. He, Lintong Huang, Huan Yang, Fengtian Hong, Yinchu Ma, Wenxiong Chen, Wenxian Guo
{"title":"基于不同模型的多尺度流态及驱动力分析——以乌河流域为例","authors":"Hongxiang Wang, Siyuan Cheng, N. He, Lintong Huang, Huan Yang, Fengtian Hong, Yinchu Ma, Wenxiong Chen, Wenxian Guo","doi":"10.2166/ws.2023.199","DOIUrl":null,"url":null,"abstract":"\n \n Quantitatively separating the influence of climate change and human activities on runoff is crucial to achieving sustainable water resource management in watersheds. This study presents a framework for quantitative assessment by integrating the indicators of hydrologic alteration, the whale optimization algorithm and random forest (WOA-RF), and the water erosion prediction (WEP-L) model. This framework aims to reconstruct natural runoff and quantify the differences in hydrological conditions and their driving forces at multi-timescales (annual, season, and month). The results indicate that the runoff of the Wu River has decreased since 2005, with a change degree of 46%. Climate factors were found to influence the interannual variation of runoff mainly. Meanwhile, human activities had a more significant impact in autumn, with a relative contribution rate of 59.0% (WOA-RF model) and 70.8% (WEP-L model). Monthly, the picture is more complex, with the results of the WOA-RF model indicating that climate change has a significant impact in July, August, and September (88.8, 92.7, and 79.3%, respectively). However, the WEP-L model results showed that the relative contribution of land use was significant in April, May, June, October, and November (51.24, 64.23, 63.63, 53.16, and 50.63%, respectively). The results of the study can be helpful for regional water allocation.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-scale flow regimes and driving forces analysis based on different models: a case study of the Wu river basin\",\"authors\":\"Hongxiang Wang, Siyuan Cheng, N. He, Lintong Huang, Huan Yang, Fengtian Hong, Yinchu Ma, Wenxiong Chen, Wenxian Guo\",\"doi\":\"10.2166/ws.2023.199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Quantitatively separating the influence of climate change and human activities on runoff is crucial to achieving sustainable water resource management in watersheds. This study presents a framework for quantitative assessment by integrating the indicators of hydrologic alteration, the whale optimization algorithm and random forest (WOA-RF), and the water erosion prediction (WEP-L) model. This framework aims to reconstruct natural runoff and quantify the differences in hydrological conditions and their driving forces at multi-timescales (annual, season, and month). The results indicate that the runoff of the Wu River has decreased since 2005, with a change degree of 46%. Climate factors were found to influence the interannual variation of runoff mainly. Meanwhile, human activities had a more significant impact in autumn, with a relative contribution rate of 59.0% (WOA-RF model) and 70.8% (WEP-L model). Monthly, the picture is more complex, with the results of the WOA-RF model indicating that climate change has a significant impact in July, August, and September (88.8, 92.7, and 79.3%, respectively). However, the WEP-L model results showed that the relative contribution of land use was significant in April, May, June, October, and November (51.24, 64.23, 63.63, 53.16, and 50.63%, respectively). The results of the study can be helpful for regional water allocation.\",\"PeriodicalId\":17553,\"journal\":{\"name\":\"Journal of Water Supply Research and Technology-aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply Research and Technology-aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

定量区分气候变化和人类活动对径流的影响对于实现流域水资源的可持续管理至关重要。本文提出了综合水文蚀变指标、随机森林优化算法(WOA-RF)和水土流失预测模型(WEP-L)的定量评价框架。该框架旨在重建自然径流,并在多时间尺度(年、季节和月)上量化水文条件及其驱动力的差异。结果表明:2005年以来,乌河径流量呈减少趋势,变化幅度为46%;气候因子主要影响径流的年际变化。人类活动对秋季的影响更为显著,相对贡献率分别为59.0% (WOA-RF模型)和70.8% (WEP-L模型)。月度情况更为复杂,WOA-RF模式的结果表明,气候变化在7月、8月和9月的影响显著(分别为88.8、92.7和79.3%)。然而,WEP-L模型结果显示,4月、5月、6月、10月和11月土地利用的相对贡献显著(分别为51.24、64.23、63.63、53.16和50.63%)。研究结果对区域水资源配置具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-scale flow regimes and driving forces analysis based on different models: a case study of the Wu river basin
Quantitatively separating the influence of climate change and human activities on runoff is crucial to achieving sustainable water resource management in watersheds. This study presents a framework for quantitative assessment by integrating the indicators of hydrologic alteration, the whale optimization algorithm and random forest (WOA-RF), and the water erosion prediction (WEP-L) model. This framework aims to reconstruct natural runoff and quantify the differences in hydrological conditions and their driving forces at multi-timescales (annual, season, and month). The results indicate that the runoff of the Wu River has decreased since 2005, with a change degree of 46%. Climate factors were found to influence the interannual variation of runoff mainly. Meanwhile, human activities had a more significant impact in autumn, with a relative contribution rate of 59.0% (WOA-RF model) and 70.8% (WEP-L model). Monthly, the picture is more complex, with the results of the WOA-RF model indicating that climate change has a significant impact in July, August, and September (88.8, 92.7, and 79.3%, respectively). However, the WEP-L model results showed that the relative contribution of land use was significant in April, May, June, October, and November (51.24, 64.23, 63.63, 53.16, and 50.63%, respectively). The results of the study can be helpful for regional water allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
74
审稿时长
4.5 months
期刊介绍: Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.
期刊最新文献
Incorporating economy and water demand rate uncertainty into decision-making for agricultural water allocation during droughts Development of water resources protection planning and environmental design in urban water conservancy landscape based on ecological concept Application of water resource economic management model in agricultural structure adjustment A synoptic assessment of groundwater quality in high water-demand regions of coastal Andhra Pradesh, India Many-objective optimisation tool for the design of district metered areas in pumped water distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1