基于层次尺度区域预测的深度图像绘制

Souradeep Chakraborty, Jogendra Nath Kundu, R. Venkatesh Babu
{"title":"基于层次尺度区域预测的深度图像绘制","authors":"Souradeep Chakraborty, Jogendra Nath Kundu, R. Venkatesh Babu","doi":"10.1145/3009977.3009992","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a CNN based method for image inpainting, which utilizes the inpaintings generated at different hierarchical resolutions. Firstly, we begin with the prediction of the missing image region with larger contextual information at the lowest resolution using deconv layers. Next, we refine the predicted region at greater hierarchical scales by imposing gradually reduced contextual information surrounding the predicted region by training different CNNs. Thus, our method not only utilizes information from different hierarchical resolutions but also intelligently leverages the context information at different hierarchy to produce better inpainted image. The individual models are trained jointly, using loss functions placed at intermediate layers. Finally, the CNN generated image region is sharpened using the unsharp masking operation, followed by intensity matching with the contextual region, to produce visually consistent and appealing inpaintings with more prominent edges. Comparison of our method with well-known inpainting methods, on the Caltech 101 objects dataset, demonstrates the quantitative and qualitative strengths of our method over the others.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"60 1","pages":"33:1-33:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep image inpainting with region prediction at hierarchical scales\",\"authors\":\"Souradeep Chakraborty, Jogendra Nath Kundu, R. Venkatesh Babu\",\"doi\":\"10.1145/3009977.3009992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a CNN based method for image inpainting, which utilizes the inpaintings generated at different hierarchical resolutions. Firstly, we begin with the prediction of the missing image region with larger contextual information at the lowest resolution using deconv layers. Next, we refine the predicted region at greater hierarchical scales by imposing gradually reduced contextual information surrounding the predicted region by training different CNNs. Thus, our method not only utilizes information from different hierarchical resolutions but also intelligently leverages the context information at different hierarchy to produce better inpainted image. The individual models are trained jointly, using loss functions placed at intermediate layers. Finally, the CNN generated image region is sharpened using the unsharp masking operation, followed by intensity matching with the contextual region, to produce visually consistent and appealing inpaintings with more prominent edges. Comparison of our method with well-known inpainting methods, on the Caltech 101 objects dataset, demonstrates the quantitative and qualitative strengths of our method over the others.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"60 1\",\"pages\":\"33:1-33:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3009992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3009992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于CNN的图像绘制方法,该方法利用在不同层次分辨率下生成的图像。首先,我们使用反卷积层在最低分辨率下预测具有较大上下文信息的缺失图像区域。接下来,我们通过训练不同的cnn在预测区域周围施加逐渐减少的上下文信息,从而在更大的层次尺度上改进预测区域。因此,我们的方法不仅利用了不同层次分辨率的信息,而且还智能地利用了不同层次的上下文信息来生成更好的图像。使用中间层的损失函数,对单个模型进行联合训练。最后,对CNN生成的图像区域进行非锐化掩蔽操作,然后与上下文区域进行强度匹配,生成边缘更加突出的视觉一致性和吸引人的图像。在加州理工学院101对象数据集上,将我们的方法与众所周知的喷漆方法进行比较,证明了我们的方法在定量和定性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep image inpainting with region prediction at hierarchical scales
In this paper, we propose a CNN based method for image inpainting, which utilizes the inpaintings generated at different hierarchical resolutions. Firstly, we begin with the prediction of the missing image region with larger contextual information at the lowest resolution using deconv layers. Next, we refine the predicted region at greater hierarchical scales by imposing gradually reduced contextual information surrounding the predicted region by training different CNNs. Thus, our method not only utilizes information from different hierarchical resolutions but also intelligently leverages the context information at different hierarchy to produce better inpainted image. The individual models are trained jointly, using loss functions placed at intermediate layers. Finally, the CNN generated image region is sharpened using the unsharp masking operation, followed by intensity matching with the contextual region, to produce visually consistent and appealing inpaintings with more prominent edges. Comparison of our method with well-known inpainting methods, on the Caltech 101 objects dataset, demonstrates the quantitative and qualitative strengths of our method over the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1