{"title":"基于改进变分模式分解和自回归模型的HIFU治疗过程中变性生物组织识别","authors":"Bei Liu, Xian Zhang","doi":"10.32604/cmes.2022.018130","DOIUrl":null,"url":null,"abstract":"During high-intensity focused ultrasound (HIFU) treatment, the accurate identification of denatured biological tissue is an important practical problem. In this paper, a novel method based on the improved variational mode decomposition (IVMD) and autoregressive (AR) model was proposed, which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment. Firstly, the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions (IMF). The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising. Then, the AR model was introduced to improve the recognition rate of denatured biological tissues. The AR model order parameter was determined by the Akaike information criterion (AIC) and the characteristics of the AR coefficients were extracted. Finally, the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic (ROC). The experiments showed that the signal-to-noise ratio (SNR) and root mean square error (RMSE) of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition (VMD). The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment, and the support vector machine (SVM) was used to identify the denatured biological tissue. The results show that compared with sample entropy, information entropy, and energy methods, the proposed IVMD-AR method can more effectively identify denatured biological tissue. The recognition rate of denatured biological tissue was higher, up to 93.0%.","PeriodicalId":10451,"journal":{"name":"Cmes-computer Modeling in Engineering & Sciences","volume":"17 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of Denatured Biological Tissues Based on Improved Variational Mode Decomposition and Autoregressive Model during HIFU Treatment\",\"authors\":\"Bei Liu, Xian Zhang\",\"doi\":\"10.32604/cmes.2022.018130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During high-intensity focused ultrasound (HIFU) treatment, the accurate identification of denatured biological tissue is an important practical problem. In this paper, a novel method based on the improved variational mode decomposition (IVMD) and autoregressive (AR) model was proposed, which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment. Firstly, the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions (IMF). The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising. Then, the AR model was introduced to improve the recognition rate of denatured biological tissues. The AR model order parameter was determined by the Akaike information criterion (AIC) and the characteristics of the AR coefficients were extracted. Finally, the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic (ROC). The experiments showed that the signal-to-noise ratio (SNR) and root mean square error (RMSE) of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition (VMD). The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment, and the support vector machine (SVM) was used to identify the denatured biological tissue. The results show that compared with sample entropy, information entropy, and energy methods, the proposed IVMD-AR method can more effectively identify denatured biological tissue. The recognition rate of denatured biological tissue was higher, up to 93.0%.\",\"PeriodicalId\":10451,\"journal\":{\"name\":\"Cmes-computer Modeling in Engineering & Sciences\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cmes-computer Modeling in Engineering & Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32604/cmes.2022.018130\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmes-computer Modeling in Engineering & Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32604/cmes.2022.018130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
在高强度聚焦超声(HIFU)治疗中,变性生物组织的准确识别是一个重要的现实问题。本文提出了一种基于改进变分模态分解(IVMD)和自回归(AR)模型的方法,根据HIFU治疗过程中超声散射回波信号的特征识别变性生物组织。首先,针对固有模态函数(IMF)数量有限导致VMD重构信号仍然存在噪声的问题,提出了IVMD方法;利用IVMD对超声散射回波信号进行重构,实现去噪。然后,引入AR模型,提高变性生物组织的识别率。利用赤池信息准则(Akaike information criterion, AIC)确定AR模型阶数参数,提取AR系数的特征。最后,根据受试者工作特征(ROC)结果选择最佳的AR系数特征。实验表明,IVMD得到的重构信号信噪比(SNR)和均方根误差(RMSE)优于变分模态分解(VMD)得到的重构信号。将IVMD-AR方法应用于HIFU治疗过程中的实际超声散射回波信号,并利用支持向量机(SVM)识别变性生物组织。结果表明,与样本熵、信息熵和能量方法相比,所提出的IVMD-AR方法能更有效地识别变性生物组织。对变性生物组织的识别率较高,达93.0%。
Identification of Denatured Biological Tissues Based on Improved Variational Mode Decomposition and Autoregressive Model during HIFU Treatment
During high-intensity focused ultrasound (HIFU) treatment, the accurate identification of denatured biological tissue is an important practical problem. In this paper, a novel method based on the improved variational mode decomposition (IVMD) and autoregressive (AR) model was proposed, which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment. Firstly, the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions (IMF). The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising. Then, the AR model was introduced to improve the recognition rate of denatured biological tissues. The AR model order parameter was determined by the Akaike information criterion (AIC) and the characteristics of the AR coefficients were extracted. Finally, the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic (ROC). The experiments showed that the signal-to-noise ratio (SNR) and root mean square error (RMSE) of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition (VMD). The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment, and the support vector machine (SVM) was used to identify the denatured biological tissue. The results show that compared with sample entropy, information entropy, and energy methods, the proposed IVMD-AR method can more effectively identify denatured biological tissue. The recognition rate of denatured biological tissue was higher, up to 93.0%.
期刊介绍:
This journal publishes original research papers of reasonable permanent value, in the areas of computational mechanics, computational physics, computational chemistry, and computational biology, pertinent to solids, fluids, gases, biomaterials, and other continua. Various length scales (quantum, nano, micro, meso, and macro), and various time scales ( picoseconds to hours) are of interest. Papers which deal with multi-physics problems, as well as those which deal with the interfaces of mechanics, chemistry, and biology, are particularly encouraged. New computational approaches, and more efficient algorithms, which eventually make near-real-time computations possible, are welcome. Original papers dealing with new methods such as meshless methods, and mesh-reduction methods are sought.