金刚石衬底上GaN hemt的热输运分析与表征

D. Altman, M. Tyhach, J. Mcclymonds, Samuel H. Kim, S. Graham, Jungwan Cho, K. Goodson, D. Francis, F. Faili, F. Ejeckam, S. Bernstein
{"title":"金刚石衬底上GaN hemt的热输运分析与表征","authors":"D. Altman, M. Tyhach, J. Mcclymonds, Samuel H. Kim, S. Graham, Jungwan Cho, K. Goodson, D. Francis, F. Faili, F. Ejeckam, S. Bernstein","doi":"10.1109/ITHERM.2014.6892416","DOIUrl":null,"url":null,"abstract":"The emergence of Gallium Nitride-based High Electron Mobility Transistor (HEMT) technology has proven to be a significant enabler of next generation RF systems. However, thermal considerations currently prevent exploitation of the full electromagnetic potential of GaN in most applications, limiting HEMT areal power density (W/mm2) to a small fraction of electrically limited performance. GaN on Diamond technology has been developed to reduce near junction thermal resistance in GaN HEMTs. However, optimal implementation of GaN on Diamond requires thorough understanding of thermal transport in GaN, CVD diamond and interfacial layers in GaN on Diamond substrates, which has not been thoroughly previously addressed. To meet this need, our study pursued characterization of constituent thermal properties in GaN on Diamond substrates and temperature measurement of operational GaN on Diamond HEMTs, employing electro-thermal modeling of the HEMT devices to interpret and relate data. Strong agreement was obtained between simulations and HEMT operational temperature measurements made using two independent thermal metrology techniques, enabling confident assessment of peak junction temperature. The results support the potential of GaN on Diamond to enable a 3X increase in HEMT areal dissipation density without significantly increasing operational temperature. Such increases in HEMT power density will enable smaller, higher power density Monolithic Microwave Integrated Circuits (MMICs).","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"79 1","pages":"1199-1205"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Analysis and characterization of thermal transport in GaN HEMTs on Diamond substrates\",\"authors\":\"D. Altman, M. Tyhach, J. Mcclymonds, Samuel H. Kim, S. Graham, Jungwan Cho, K. Goodson, D. Francis, F. Faili, F. Ejeckam, S. Bernstein\",\"doi\":\"10.1109/ITHERM.2014.6892416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of Gallium Nitride-based High Electron Mobility Transistor (HEMT) technology has proven to be a significant enabler of next generation RF systems. However, thermal considerations currently prevent exploitation of the full electromagnetic potential of GaN in most applications, limiting HEMT areal power density (W/mm2) to a small fraction of electrically limited performance. GaN on Diamond technology has been developed to reduce near junction thermal resistance in GaN HEMTs. However, optimal implementation of GaN on Diamond requires thorough understanding of thermal transport in GaN, CVD diamond and interfacial layers in GaN on Diamond substrates, which has not been thoroughly previously addressed. To meet this need, our study pursued characterization of constituent thermal properties in GaN on Diamond substrates and temperature measurement of operational GaN on Diamond HEMTs, employing electro-thermal modeling of the HEMT devices to interpret and relate data. Strong agreement was obtained between simulations and HEMT operational temperature measurements made using two independent thermal metrology techniques, enabling confident assessment of peak junction temperature. The results support the potential of GaN on Diamond to enable a 3X increase in HEMT areal dissipation density without significantly increasing operational temperature. Such increases in HEMT power density will enable smaller, higher power density Monolithic Microwave Integrated Circuits (MMICs).\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"79 1\",\"pages\":\"1199-1205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

基于氮化镓的高电子迁移率晶体管(HEMT)技术的出现已被证明是下一代射频系统的重要推动者。然而,目前在大多数应用中,热方面的考虑阻碍了氮化镓的全部电磁潜力的开发,将HEMT的面功率密度(W/mm2)限制在电限制性能的一小部分。金刚石上氮化镓技术的发展是为了降低氮化镓hemt的近结热阻。然而,氮化镓在金刚石上的最佳实现需要彻底了解氮化镓、CVD金刚石和氮化镓在金刚石衬底上的界面层中的热传输,这在以前没有得到彻底的解决。为了满足这一需求,我们的研究采用HEMT器件的电热建模来解释和关联数据,对金刚石衬底上GaN的组成热特性进行了表征,并对金刚石HEMT上运行GaN的温度进行了测量。利用两种独立的热测量技术,在模拟和HEMT工作温度测量之间获得了强有力的一致性,从而能够对峰值结温进行可靠的评估。研究结果支持GaN在金刚石上的潜力,使HEMT的面积耗散密度增加3倍,而不会显著提高工作温度。HEMT功率密度的增加将使更小、更高功率密度的单片微波集成电路(mmic)成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and characterization of thermal transport in GaN HEMTs on Diamond substrates
The emergence of Gallium Nitride-based High Electron Mobility Transistor (HEMT) technology has proven to be a significant enabler of next generation RF systems. However, thermal considerations currently prevent exploitation of the full electromagnetic potential of GaN in most applications, limiting HEMT areal power density (W/mm2) to a small fraction of electrically limited performance. GaN on Diamond technology has been developed to reduce near junction thermal resistance in GaN HEMTs. However, optimal implementation of GaN on Diamond requires thorough understanding of thermal transport in GaN, CVD diamond and interfacial layers in GaN on Diamond substrates, which has not been thoroughly previously addressed. To meet this need, our study pursued characterization of constituent thermal properties in GaN on Diamond substrates and temperature measurement of operational GaN on Diamond HEMTs, employing electro-thermal modeling of the HEMT devices to interpret and relate data. Strong agreement was obtained between simulations and HEMT operational temperature measurements made using two independent thermal metrology techniques, enabling confident assessment of peak junction temperature. The results support the potential of GaN on Diamond to enable a 3X increase in HEMT areal dissipation density without significantly increasing operational temperature. Such increases in HEMT power density will enable smaller, higher power density Monolithic Microwave Integrated Circuits (MMICs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material behavior of SAC305 under high strain rate at high temperature Phase-separation of wetting fluids using nanoporous alumina membranes and micro-glass capillaries Nature-inspired enhanced microscale heat transfer in macro geometry Transient thermal imaging characterization of a die attached optoelectronic device on silicon A model for the free (top) surface deformation of through-silicon vias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1