基于NEDC和WLTP循环的车辆燃料消耗和可回收能量的比较

IF 0.5 4区 工程技术 Q4 ENERGY & FUELS Ct&f-Ciencia Tecnologia Y Futuro Pub Date : 2022-12-30 DOI:10.29047/01225383.628
M. I. Karamangil, Merve Tekin
{"title":"基于NEDC和WLTP循环的车辆燃料消耗和可回收能量的比较","authors":"M. I. Karamangil, Merve Tekin","doi":"10.29047/01225383.628","DOIUrl":null,"url":null,"abstract":"Since 1997, the NEDC (New European Driving Cycle) has been used to measure CO2 emissions. However, because this cycle is unable to accurately replicate real-world driving conditions, a new procedure has been developed. The WLTP (Worldwide Harmonised Light Vehicles Test Procedure), which is 10 minutes longer and more dynamic than NEDC, has been used since late 2017. In this paper, fuel consumption, CO2 emissions, and energy demand of these two cycles are compared. The vehicle mathematical model was created in a MATLAB program using vehicle longitudinal motion equations for a light commercial vehicle with a diesel engine. The speed profiles of the commonly used NEDC and WLTP cycles were defined in the model, and the fuel consumption, CO2 emission values, and the total energy values required for each cycle were calculated. Furthermore, the recoverable energy potential of the cycle has been revealed. According to the WLTP cycle, the vehicle's fuel consumption and CO2 emission values were calculated at approximately 11% more than the NEDC cycle. The recoverable energy potential is 2.64 times higher in the WLTP cycle compared to the NEDC cycle. Thus, for vehicle designers, it is a very useful tool that can calculate the fuel and CO2 consumption of a vehicle in 100 km according to certain cycles, based on vehicle parameters.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"23 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of fuel consumption and recoverable energy according to NEDC and WLTP cycles of a vehicle\",\"authors\":\"M. I. Karamangil, Merve Tekin\",\"doi\":\"10.29047/01225383.628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 1997, the NEDC (New European Driving Cycle) has been used to measure CO2 emissions. However, because this cycle is unable to accurately replicate real-world driving conditions, a new procedure has been developed. The WLTP (Worldwide Harmonised Light Vehicles Test Procedure), which is 10 minutes longer and more dynamic than NEDC, has been used since late 2017. In this paper, fuel consumption, CO2 emissions, and energy demand of these two cycles are compared. The vehicle mathematical model was created in a MATLAB program using vehicle longitudinal motion equations for a light commercial vehicle with a diesel engine. The speed profiles of the commonly used NEDC and WLTP cycles were defined in the model, and the fuel consumption, CO2 emission values, and the total energy values required for each cycle were calculated. Furthermore, the recoverable energy potential of the cycle has been revealed. According to the WLTP cycle, the vehicle's fuel consumption and CO2 emission values were calculated at approximately 11% more than the NEDC cycle. The recoverable energy potential is 2.64 times higher in the WLTP cycle compared to the NEDC cycle. Thus, for vehicle designers, it is a very useful tool that can calculate the fuel and CO2 consumption of a vehicle in 100 km according to certain cycles, based on vehicle parameters.\",\"PeriodicalId\":55200,\"journal\":{\"name\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.628\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ct&f-Ciencia Tecnologia Y Futuro","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.29047/01225383.628","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

自1997年以来,NEDC(新欧洲驾驶循环)已被用于测量二氧化碳排放量。然而,由于这种循环无法准确地复制真实的驾驶条件,因此开发了一种新的程序。WLTP(全球统一轻型车辆测试程序)比NEDC长10分钟,更具动态性,自2017年底开始使用。本文对这两种循环的油耗、CO2排放和能源需求进行了比较。以某柴油机轻型商用车为例,利用整车纵向运动方程,在MATLAB中建立了整车数学模型。在模型中定义了常用NEDC和WLTP工况的转速曲线,计算了各工况的油耗、CO2排放值和总能量值。此外,还揭示了循环的可回收能量势。根据WLTP循环,车辆的油耗和二氧化碳排放值比NEDC循环高出约11%。WLTP循环的可采能量潜力是NEDC循环的2.64倍。因此,对于车辆设计师来说,它是一个非常有用的工具,可以根据车辆参数,根据一定的循环计算出车辆在100公里内的燃料和二氧化碳消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of fuel consumption and recoverable energy according to NEDC and WLTP cycles of a vehicle
Since 1997, the NEDC (New European Driving Cycle) has been used to measure CO2 emissions. However, because this cycle is unable to accurately replicate real-world driving conditions, a new procedure has been developed. The WLTP (Worldwide Harmonised Light Vehicles Test Procedure), which is 10 minutes longer and more dynamic than NEDC, has been used since late 2017. In this paper, fuel consumption, CO2 emissions, and energy demand of these two cycles are compared. The vehicle mathematical model was created in a MATLAB program using vehicle longitudinal motion equations for a light commercial vehicle with a diesel engine. The speed profiles of the commonly used NEDC and WLTP cycles were defined in the model, and the fuel consumption, CO2 emission values, and the total energy values required for each cycle were calculated. Furthermore, the recoverable energy potential of the cycle has been revealed. According to the WLTP cycle, the vehicle's fuel consumption and CO2 emission values were calculated at approximately 11% more than the NEDC cycle. The recoverable energy potential is 2.64 times higher in the WLTP cycle compared to the NEDC cycle. Thus, for vehicle designers, it is a very useful tool that can calculate the fuel and CO2 consumption of a vehicle in 100 km according to certain cycles, based on vehicle parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ct&f-Ciencia Tecnologia Y Futuro
Ct&f-Ciencia Tecnologia Y Futuro Energy-General Energy
CiteScore
1.50
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The objective of CT&F is to publish the achievements of scientific research and technological developments of Ecopetrol S.A. and the research of other institutions in the field of oil, gas and alternative energy sources. CT&F welcomes original, novel and high-impact contributions from all the fields in the oil and gas industry like: Acquisition and Exploration technologies, Basins characterization and modeling, Petroleum geology, Reservoir modeling, Enhanced Oil Recovery Technologies, Unconventional resources, Petroleum refining, Petrochemistry, Upgrading technologies, Technologies for fuels quality, Process modeling, and optimization, Supply chain optimization, Biofuels, Renewable energies.
期刊最新文献
Potential and economic feasibility of a wind power plant in Ciudad Juárez, México Assessment of terrigenous and marine sourced oils mixtures: Los Manueles field, Maracaibo basin Venezuela Comparison of fuel consumption and recoverable energy according to NEDC and WLTP cycles of a vehicle Detachment levels of Colombian caribbean mud volcanoes A practical guide of the 2D acoustic full waveform inversion on synthetic land seismic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1