通过交换ML模型进行集体自我学习

M. Ruiz, F. Boitier, P. Layec, Luis Velasco
{"title":"通过交换ML模型进行集体自我学习","authors":"M. Ruiz, F. Boitier, P. Layec, Luis Velasco","doi":"10.1049/cp.2019.0985","DOIUrl":null,"url":null,"abstract":"Collective self-learning based on Machine Learning (ML) model sharing and combination is proposed to accelerate ML-based algorithm deployment. The considered architecture is presented, together with different alternatives for combining ML models. Performance analysis is carried out on an illustrative use case for autonomic optical transmission.","PeriodicalId":6826,"journal":{"name":"45th European Conference on Optical Communication (ECOC 2019)","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective self-learning by exchanging ML models\",\"authors\":\"M. Ruiz, F. Boitier, P. Layec, Luis Velasco\",\"doi\":\"10.1049/cp.2019.0985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collective self-learning based on Machine Learning (ML) model sharing and combination is proposed to accelerate ML-based algorithm deployment. The considered architecture is presented, together with different alternatives for combining ML models. Performance analysis is carried out on an illustrative use case for autonomic optical transmission.\",\"PeriodicalId\":6826,\"journal\":{\"name\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/cp.2019.0985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"45th European Conference on Optical Communication (ECOC 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cp.2019.0985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了加速机器学习算法的部署,提出了基于机器学习模型共享和组合的集体自学习方法。提出了考虑的体系结构,以及用于组合ML模型的不同替代方案。对自主光传输的一个实例进行了性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collective self-learning by exchanging ML models
Collective self-learning based on Machine Learning (ML) model sharing and combination is proposed to accelerate ML-based algorithm deployment. The considered architecture is presented, together with different alternatives for combining ML models. Performance analysis is carried out on an illustrative use case for autonomic optical transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultimate capacity limit of a multi-span link with phase-insensitive amplification Improvement of accuracy for measurement of 100-km fibre latency with Correlation OTDR Real-time discrete multi-tone transmission for passive optical networks in Cand O-band Modulation Format Dependent, Closed-Form Formula for Estimating Nonlinear Interference in S+C+L Band Systems Flexible metro network architecture based on wavelength blockers and coherent transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1