Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F. Bissyandé, Jacques Klein, J. Grundy
{"title":"基于机器学习的Android恶意软件检测中样本重复的影响研究","authors":"Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F. Bissyandé, Jacques Klein, J. Grundy","doi":"10.1145/3446905","DOIUrl":null,"url":null,"abstract":"Malware detection at scale in the Android realm is often carried out using machine learning techniques. State-of-the-art approaches such as DREBIN and MaMaDroid are reported to yield high detection rates when assessed against well-known datasets. Unfortunately, such datasets may include a large portion of duplicated samples, which may bias recorded experimental results and insights. In this article, we perform extensive experiments to measure the performance gap that occurs when datasets are de-duplicated. Our experimental results reveal that duplication in published datasets has a limited impact on supervised malware classification models. This observation contrasts with the finding of Allamanis on the general case of machine learning bias for big code. Our experiments, however, show that sample duplication more substantially affects unsupervised learning models (e.g., malware family clustering). Nevertheless, we argue that our fellow researchers and practitioners should always take sample duplication into consideration when performing machine-learning-based (via either supervised or unsupervised learning) Android malware detections, no matter how significant the impact might be.","PeriodicalId":7398,"journal":{"name":"ACM Transactions on Software Engineering and Methodology (TOSEM)","volume":"43 1","pages":"1 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"On the Impact of Sample Duplication in Machine-Learning-Based Android Malware Detection\",\"authors\":\"Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F. Bissyandé, Jacques Klein, J. Grundy\",\"doi\":\"10.1145/3446905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware detection at scale in the Android realm is often carried out using machine learning techniques. State-of-the-art approaches such as DREBIN and MaMaDroid are reported to yield high detection rates when assessed against well-known datasets. Unfortunately, such datasets may include a large portion of duplicated samples, which may bias recorded experimental results and insights. In this article, we perform extensive experiments to measure the performance gap that occurs when datasets are de-duplicated. Our experimental results reveal that duplication in published datasets has a limited impact on supervised malware classification models. This observation contrasts with the finding of Allamanis on the general case of machine learning bias for big code. Our experiments, however, show that sample duplication more substantially affects unsupervised learning models (e.g., malware family clustering). Nevertheless, we argue that our fellow researchers and practitioners should always take sample duplication into consideration when performing machine-learning-based (via either supervised or unsupervised learning) Android malware detections, no matter how significant the impact might be.\",\"PeriodicalId\":7398,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"volume\":\"43 1\",\"pages\":\"1 - 38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology (TOSEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Impact of Sample Duplication in Machine-Learning-Based Android Malware Detection
Malware detection at scale in the Android realm is often carried out using machine learning techniques. State-of-the-art approaches such as DREBIN and MaMaDroid are reported to yield high detection rates when assessed against well-known datasets. Unfortunately, such datasets may include a large portion of duplicated samples, which may bias recorded experimental results and insights. In this article, we perform extensive experiments to measure the performance gap that occurs when datasets are de-duplicated. Our experimental results reveal that duplication in published datasets has a limited impact on supervised malware classification models. This observation contrasts with the finding of Allamanis on the general case of machine learning bias for big code. Our experiments, however, show that sample duplication more substantially affects unsupervised learning models (e.g., malware family clustering). Nevertheless, we argue that our fellow researchers and practitioners should always take sample duplication into consideration when performing machine-learning-based (via either supervised or unsupervised learning) Android malware detections, no matter how significant the impact might be.