多材料髋部总成干、湿润滑分析

Ravikant, Vinod Kumar Mittal, Dr. Vikas Gupta
{"title":"多材料髋部总成干、湿润滑分析","authors":"Ravikant, Vinod Kumar Mittal, Dr. Vikas Gupta","doi":"10.15282/ijame.19.1.2022.22.0741","DOIUrl":null,"url":null,"abstract":"Hip joint repair/replacement is one of the most thriving orthopedic surgical procedures in the human body. The group of patients undergoing hip replacement considerably includes young and physically active persons with varying movements thus requiring longer product life and ease of maintenance. Perfect lubrication in hip assembly ensures a low wear rate and better product life. The present work focuses on dry and wet lubrication analysis of complete implant assembly instead of an individual part. The assembly consists of a stem, head, liner and cup, each made of different materials like a ceramic femoral head mounted over a metallic femoral stem with a polyethylene liner and a metallic acetabular cup.  In this work, eight metal-materials are considered for stem/cup, three ceramic materials for the head and two polyethylene materials for the liner. The combinations of these materials are evaluated for various mechanical parameters. Dry (µ = 0.13) and wet (µ = 0.05) lubricating conditions between the liner and femoral head have been considered and their effects on the head, liner and cup have been evaluated for the optimization of Hip joint design. Fifty percent of re-surgery cases arise because of excessive wear out resulting in aseptic loosening of the femoral head and liner interface. Femoral head of size 28 mm diameter with 2 mm thick liner and 3 mm thick acetabular cup are modeled and are analyzed for axial pay load of 2.3 kN. The maximum von mises stress and total deformation for various material combinations of implant assembly have been compared to select the most suitable one for the arthroplasty implantation. The combination of CoCrMo – Ceramics – HXLPE – CoCrMo demonstrates minimum stress and deformation for all three parts i.e. femoral head, liner and acetabular cup under present loading and boundary conditions. ZTA is emerged as the preferred ceramic material for femoral head having a higher compressive strength.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"141 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dry and Wet Lubrication Analysis for Multi-Material Hip Assembly\",\"authors\":\"Ravikant, Vinod Kumar Mittal, Dr. Vikas Gupta\",\"doi\":\"10.15282/ijame.19.1.2022.22.0741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hip joint repair/replacement is one of the most thriving orthopedic surgical procedures in the human body. The group of patients undergoing hip replacement considerably includes young and physically active persons with varying movements thus requiring longer product life and ease of maintenance. Perfect lubrication in hip assembly ensures a low wear rate and better product life. The present work focuses on dry and wet lubrication analysis of complete implant assembly instead of an individual part. The assembly consists of a stem, head, liner and cup, each made of different materials like a ceramic femoral head mounted over a metallic femoral stem with a polyethylene liner and a metallic acetabular cup.  In this work, eight metal-materials are considered for stem/cup, three ceramic materials for the head and two polyethylene materials for the liner. The combinations of these materials are evaluated for various mechanical parameters. Dry (µ = 0.13) and wet (µ = 0.05) lubricating conditions between the liner and femoral head have been considered and their effects on the head, liner and cup have been evaluated for the optimization of Hip joint design. Fifty percent of re-surgery cases arise because of excessive wear out resulting in aseptic loosening of the femoral head and liner interface. Femoral head of size 28 mm diameter with 2 mm thick liner and 3 mm thick acetabular cup are modeled and are analyzed for axial pay load of 2.3 kN. The maximum von mises stress and total deformation for various material combinations of implant assembly have been compared to select the most suitable one for the arthroplasty implantation. The combination of CoCrMo – Ceramics – HXLPE – CoCrMo demonstrates minimum stress and deformation for all three parts i.e. femoral head, liner and acetabular cup under present loading and boundary conditions. ZTA is emerged as the preferred ceramic material for femoral head having a higher compressive strength.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.1.2022.22.0741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.1.2022.22.0741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

髋关节修复/置换术是人体整形外科手术中最蓬勃发展的手术之一。接受髋关节置换术的患者群体相当多地包括年轻人和身体活跃的人,他们的动作不同,因此需要更长的产品寿命和易于维护。臀部总成的完美润滑确保了低磨损率和更长的产品寿命。目前的工作侧重于整个植入体总成的干润滑和湿润滑分析,而不是单个部件。该装置由茎、头、衬垫和杯组成,每一个都由不同的材料制成,比如陶瓷股骨头安装在金属股茎上,金属股茎上有聚乙烯衬垫和金属髋臼杯。在这项工作中,考虑了八种金属材料用于杆/杯,三种陶瓷材料用于头部,两种聚乙烯材料用于衬垫。根据不同的力学参数对这些材料的组合进行了评估。考虑了衬垫与股骨头之间的干润滑(µ= 0.13)和湿润滑(µ= 0.05)条件,并评估了它们对股骨头、衬垫和股骨头的影响,以优化髋关节设计。50%的再手术病例是由于过度磨损导致股骨头和衬管界面无菌性松动。在2.3 kN轴向载荷下,对直径28 mm股骨头、2 mm厚衬垫和3 mm厚髋臼杯进行建模和分析。通过比较不同材料组合的最大von mises应力和总变形,选择最适合关节置换术的材料组合。CoCrMo - Ceramics - HXLPE - CoCrMo的组合在现有载荷和边界条件下对股骨头、衬板和髋臼杯这三个部分的应力和变形最小。由于具有较高的抗压强度,ZTA成为首选的股骨头陶瓷材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dry and Wet Lubrication Analysis for Multi-Material Hip Assembly
Hip joint repair/replacement is one of the most thriving orthopedic surgical procedures in the human body. The group of patients undergoing hip replacement considerably includes young and physically active persons with varying movements thus requiring longer product life and ease of maintenance. Perfect lubrication in hip assembly ensures a low wear rate and better product life. The present work focuses on dry and wet lubrication analysis of complete implant assembly instead of an individual part. The assembly consists of a stem, head, liner and cup, each made of different materials like a ceramic femoral head mounted over a metallic femoral stem with a polyethylene liner and a metallic acetabular cup.  In this work, eight metal-materials are considered for stem/cup, three ceramic materials for the head and two polyethylene materials for the liner. The combinations of these materials are evaluated for various mechanical parameters. Dry (µ = 0.13) and wet (µ = 0.05) lubricating conditions between the liner and femoral head have been considered and their effects on the head, liner and cup have been evaluated for the optimization of Hip joint design. Fifty percent of re-surgery cases arise because of excessive wear out resulting in aseptic loosening of the femoral head and liner interface. Femoral head of size 28 mm diameter with 2 mm thick liner and 3 mm thick acetabular cup are modeled and are analyzed for axial pay load of 2.3 kN. The maximum von mises stress and total deformation for various material combinations of implant assembly have been compared to select the most suitable one for the arthroplasty implantation. The combination of CoCrMo – Ceramics – HXLPE – CoCrMo demonstrates minimum stress and deformation for all three parts i.e. femoral head, liner and acetabular cup under present loading and boundary conditions. ZTA is emerged as the preferred ceramic material for femoral head having a higher compressive strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
期刊最新文献
Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1