krigedge: Delta套期保值的高斯过程替代品

M. Ludkovski, Y. Saporito
{"title":"krigedge: Delta套期保值的高斯过程替代品","authors":"M. Ludkovski, Y. Saporito","doi":"10.1080/1350486X.2022.2039250","DOIUrl":null,"url":null,"abstract":"We investigate a machine learning approach to option Greeks approximation based on Gaussian Process (GP) surrogates. Our motivation is to implement Delta hedging in cases where direct computation is expensive, such as in local volatility models, or can only ever be done approximately. The proposed method takes in noisily observed option prices, fits a non-parametric input-output map and then analytically differentiates the latter to obtain the various price sensitivities. Thus, a single surrogate yields multiple self-consistent Greeks. We provide a detailed analysis of numerous aspects of GP surrogates, including choice of kernel family, simulation design, choice of trend function and impact of noise. We moreover connect the quality of the Delta approximation to the resulting discrete-time hedging loss. Results are illustrated with two extensive case studies that consider estimation of Delta, Theta and Gamma and benchmark approximation quality and uncertainty quantification using a variety of statistical metrics. Among our key take-aways are the recommendation to use Matérn kernels, the benefit of including virtual training points to capture boundary conditions, and the significant loss of fidelity when training on stock-path-based datasets.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"KrigHedge: Gaussian Process Surrogates for Delta Hedging\",\"authors\":\"M. Ludkovski, Y. Saporito\",\"doi\":\"10.1080/1350486X.2022.2039250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a machine learning approach to option Greeks approximation based on Gaussian Process (GP) surrogates. Our motivation is to implement Delta hedging in cases where direct computation is expensive, such as in local volatility models, or can only ever be done approximately. The proposed method takes in noisily observed option prices, fits a non-parametric input-output map and then analytically differentiates the latter to obtain the various price sensitivities. Thus, a single surrogate yields multiple self-consistent Greeks. We provide a detailed analysis of numerous aspects of GP surrogates, including choice of kernel family, simulation design, choice of trend function and impact of noise. We moreover connect the quality of the Delta approximation to the resulting discrete-time hedging loss. Results are illustrated with two extensive case studies that consider estimation of Delta, Theta and Gamma and benchmark approximation quality and uncertainty quantification using a variety of statistical metrics. Among our key take-aways are the recommendation to use Matérn kernels, the benefit of including virtual training points to capture boundary conditions, and the significant loss of fidelity when training on stock-path-based datasets.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2022.2039250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2022.2039250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了一种基于高斯过程(GP)代理的选项希腊近似的机器学习方法。我们的动机是在直接计算非常昂贵的情况下实现Delta套期保值,比如在局部波动模型中,或者只能近似地完成。该方法采用噪声观测的期权价格,拟合非参数输入-输出映射,然后对后者进行解析微分,得到不同的价格敏感性。因此,一个代理会产生多个自洽的希腊人。我们详细分析了GP代理的许多方面,包括核族的选择、仿真设计、趋势函数的选择和噪声的影响。此外,我们将Delta近似的质量与由此产生的离散时间套期损失联系起来。结果用两个广泛的案例研究来说明,这些案例研究考虑了Delta, Theta和Gamma的估计以及使用各种统计度量的基准近似质量和不确定性量化。我们的主要结论是建议使用mat核,包括虚拟训练点捕获边界条件的好处,以及在基于股票路径的数据集上训练时保真度的显著损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KrigHedge: Gaussian Process Surrogates for Delta Hedging
We investigate a machine learning approach to option Greeks approximation based on Gaussian Process (GP) surrogates. Our motivation is to implement Delta hedging in cases where direct computation is expensive, such as in local volatility models, or can only ever be done approximately. The proposed method takes in noisily observed option prices, fits a non-parametric input-output map and then analytically differentiates the latter to obtain the various price sensitivities. Thus, a single surrogate yields multiple self-consistent Greeks. We provide a detailed analysis of numerous aspects of GP surrogates, including choice of kernel family, simulation design, choice of trend function and impact of noise. We moreover connect the quality of the Delta approximation to the resulting discrete-time hedging loss. Results are illustrated with two extensive case studies that consider estimation of Delta, Theta and Gamma and benchmark approximation quality and uncertainty quantification using a variety of statistical metrics. Among our key take-aways are the recommendation to use Matérn kernels, the benefit of including virtual training points to capture boundary conditions, and the significant loss of fidelity when training on stock-path-based datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1