基于单细胞仿真模型概念的凝析液PVT模型质量校核

Oleksandr Volodymyrovych Burachok, Dmytro Volodymyrovych Pershyn, Serhii Vasylovych Matkivskyi, Yefim Semenovych Bikman, Oleksandr Romanovych Kondrat, Viacheslav Yuriiovych Filatov
{"title":"基于单细胞仿真模型概念的凝析液PVT模型质量校核","authors":"Oleksandr Volodymyrovych Burachok, Dmytro Volodymyrovych Pershyn, Serhii Vasylovych Matkivskyi, Yefim Semenovych Bikman, Oleksandr Romanovych Kondrat, Viacheslav Yuriiovych Filatov","doi":"10.20998/2079-0821.2020.02.07","DOIUrl":null,"url":null,"abstract":"The problems of gas-condensate PVT-models (Pressure Volume Temperature, PVT) creation under limited input information were analyzed. Traditional fluid phase behavior characterization approach relies on creation of the equation of state (EOS) based on initial composition of reservoir fluid and its future regression for critical parameters (pressure and temperature), binary interaction coefficients, acentric factors of residual “plus” fraction or pseudo-components. The adjustment is done until the moment when EOS is reproducing the results of laboratory experiments. Classic PVT experiments performed on gas-condensates and volatile oils are constant composition expansion (CCE), constant volume depletion (CVD) and separator tests. However, in the case of most Ukrainian fields, discovered and explored in the last century, not only the reliable detailed initial fluid composition is not available, but phase behavior was studied with non-equilibrium method of so-called differential condensation, that does not allow their direct application for PVT models creation. Previously, the authors [1, 2] presented an alternative method for fluid characterization based on the fractional distillation test. At the same time, due to significant uncertainty in input data, particularly a) condensate production allocation; b) commingled production from multiple reservoirs with different C5+ yield; c) non-recorded change of separator conditions that affects liquid extraction and its density; d) technological production losses, issues of reproducing the condensate production during history matching of several models of Dniper-Donetsk Basin were faced. There was proposed and explained in detail an example of single-cell reservoir simulation model application concept for quality check of created PVT model for one of the fields with potential yield of 86 g/m3. The idea of the concept is based on the reproduction of material balance of gas-condensate reservoir through one conditional well controlled on a primary (gas) phase, that allows quick identification of changes into calculated gas-condensate yield curve, necessary for matching of condensate production. Implementation of these changes allows quick and precise full-field model calibration.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAS-CONDENSATE FLUID PVT MODEL QUALITY CHECK BASED ON THE CONCEPT OF A SINGLE-CELL SIMULATION MODEL\",\"authors\":\"Oleksandr Volodymyrovych Burachok, Dmytro Volodymyrovych Pershyn, Serhii Vasylovych Matkivskyi, Yefim Semenovych Bikman, Oleksandr Romanovych Kondrat, Viacheslav Yuriiovych Filatov\",\"doi\":\"10.20998/2079-0821.2020.02.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problems of gas-condensate PVT-models (Pressure Volume Temperature, PVT) creation under limited input information were analyzed. Traditional fluid phase behavior characterization approach relies on creation of the equation of state (EOS) based on initial composition of reservoir fluid and its future regression for critical parameters (pressure and temperature), binary interaction coefficients, acentric factors of residual “plus” fraction or pseudo-components. The adjustment is done until the moment when EOS is reproducing the results of laboratory experiments. Classic PVT experiments performed on gas-condensates and volatile oils are constant composition expansion (CCE), constant volume depletion (CVD) and separator tests. However, in the case of most Ukrainian fields, discovered and explored in the last century, not only the reliable detailed initial fluid composition is not available, but phase behavior was studied with non-equilibrium method of so-called differential condensation, that does not allow their direct application for PVT models creation. Previously, the authors [1, 2] presented an alternative method for fluid characterization based on the fractional distillation test. At the same time, due to significant uncertainty in input data, particularly a) condensate production allocation; b) commingled production from multiple reservoirs with different C5+ yield; c) non-recorded change of separator conditions that affects liquid extraction and its density; d) technological production losses, issues of reproducing the condensate production during history matching of several models of Dniper-Donetsk Basin were faced. There was proposed and explained in detail an example of single-cell reservoir simulation model application concept for quality check of created PVT model for one of the fields with potential yield of 86 g/m3. The idea of the concept is based on the reproduction of material balance of gas-condensate reservoir through one conditional well controlled on a primary (gas) phase, that allows quick identification of changes into calculated gas-condensate yield curve, necessary for matching of condensate production. Implementation of these changes allows quick and precise full-field model calibration.\",\"PeriodicalId\":9407,\"journal\":{\"name\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2079-0821.2020.02.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2079-0821.2020.02.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析了在有限输入信息条件下凝析气PVT模型的建立问题。传统的流体相行为表征方法依赖于基于储层流体的初始组成及其对关键参数(压力和温度)、二元相互作用系数、残余“正”分数或伪分量的离心因子的未来回归建立状态方程(EOS)。调整一直进行到EOS重现实验室实验结果的时刻。在气凝析油和挥发油上进行的经典PVT实验有恒定成分膨胀(CCE)、恒定体积耗尽(CVD)和分离器测试。然而,在上个世纪发现和勘探的大多数乌克兰油田中,不仅没有可靠的详细初始流体组成,而且还使用所谓的微分冷凝的非平衡方法研究了相行为,这使得它们不能直接应用于PVT模型的创建。此前,作者[1,2]提出了一种基于分馏试验的流体表征替代方法。同时,由于输入数据的显著不确定性,特别是a)凝析油生产分配;b)不同C5+产量的多储层混采;C)未记录的影响液体萃取及其密度的分离器条件变化;d)技术生产损失,在第聂伯-顿涅茨克盆地几个模型的历史匹配中,面临着再现凝析油产量的问题。以某潜在产量为86 g/m3的油田为例,提出并详细说明了单细胞油藏模拟模型在建立PVT模型质量检验中的应用概念。该概念的思想是基于通过一口有条件的井控制一次(气)相来再现凝析气藏的物质平衡,从而可以快速识别计算出的凝析气产量曲线的变化,这是匹配凝析油产量所必需的。这些变化的实施允许快速和精确的全场模型校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GAS-CONDENSATE FLUID PVT MODEL QUALITY CHECK BASED ON THE CONCEPT OF A SINGLE-CELL SIMULATION MODEL
The problems of gas-condensate PVT-models (Pressure Volume Temperature, PVT) creation under limited input information were analyzed. Traditional fluid phase behavior characterization approach relies on creation of the equation of state (EOS) based on initial composition of reservoir fluid and its future regression for critical parameters (pressure and temperature), binary interaction coefficients, acentric factors of residual “plus” fraction or pseudo-components. The adjustment is done until the moment when EOS is reproducing the results of laboratory experiments. Classic PVT experiments performed on gas-condensates and volatile oils are constant composition expansion (CCE), constant volume depletion (CVD) and separator tests. However, in the case of most Ukrainian fields, discovered and explored in the last century, not only the reliable detailed initial fluid composition is not available, but phase behavior was studied with non-equilibrium method of so-called differential condensation, that does not allow their direct application for PVT models creation. Previously, the authors [1, 2] presented an alternative method for fluid characterization based on the fractional distillation test. At the same time, due to significant uncertainty in input data, particularly a) condensate production allocation; b) commingled production from multiple reservoirs with different C5+ yield; c) non-recorded change of separator conditions that affects liquid extraction and its density; d) technological production losses, issues of reproducing the condensate production during history matching of several models of Dniper-Donetsk Basin were faced. There was proposed and explained in detail an example of single-cell reservoir simulation model application concept for quality check of created PVT model for one of the fields with potential yield of 86 g/m3. The idea of the concept is based on the reproduction of material balance of gas-condensate reservoir through one conditional well controlled on a primary (gas) phase, that allows quick identification of changes into calculated gas-condensate yield curve, necessary for matching of condensate production. Implementation of these changes allows quick and precise full-field model calibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
USE OF UREA FOR CLEANING USED SEMI-SYNTHETIC MOTOR OILS TECHNOLOGY OF HYBRID MODIFICATION WITH HUMIC ACIDS OF BROWN COAL HYDROXYPROPYLMETHYL CELLULOSE FILMS TECHNOLOGICAL AND CONSTRUCTIVE OPTIMIZATION OF SEPARATORS OF THE GAS PREPARATION INSTALLATION SORPTION PROPERTIES OF OXIDIZED AND NON-OXIDIZED ACTIVATED CARBON FOR COPPER(II) IONS APPLICATION OF UHF INSTALLATIONS FOR THE MANUFACTUREOF MOLDED THERMAL INSULATION PRODUCTS BASED ON LIQUID GLASS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1