{"title":"基于最小生成树和NFR框架的SCADA系统高效设计","authors":"Haranath Yakkali, N. Subramanian","doi":"10.1109/SSST.2010.5442806","DOIUrl":null,"url":null,"abstract":"Supervisory Control and Data Acquisition (SCADA) systems are being increasingly used to monitor and control critical infrastructures ranging from computer networks to manufacturing, and proper design of SCADA systems is an important issue for developers of SCADA systems and their users. Current practice seems to center around purchasing a best-of-breed solution and configuring it to meet the expected system goals. In this paper we propose an efficient design approach based on minimum spanning trees and the NFR Framework(NFR standing for Non-Functional Requirements) wherein SCADA designs are captured in spanning trees and minimum spanning trees indicate the optimally weighted designs, and the most suitable among these weighted designs is chosen by employing the NFR Framework, which is a goal-oriented framework for analyzing competing alternatives and choosing the best one based on the goals for the SCADA system. The design algorithm is verified by applying it to a case study.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"2 1","pages":"346-351"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient design of SCADA systems using minimum spanning trees and the NFR Framework\",\"authors\":\"Haranath Yakkali, N. Subramanian\",\"doi\":\"10.1109/SSST.2010.5442806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervisory Control and Data Acquisition (SCADA) systems are being increasingly used to monitor and control critical infrastructures ranging from computer networks to manufacturing, and proper design of SCADA systems is an important issue for developers of SCADA systems and their users. Current practice seems to center around purchasing a best-of-breed solution and configuring it to meet the expected system goals. In this paper we propose an efficient design approach based on minimum spanning trees and the NFR Framework(NFR standing for Non-Functional Requirements) wherein SCADA designs are captured in spanning trees and minimum spanning trees indicate the optimally weighted designs, and the most suitable among these weighted designs is chosen by employing the NFR Framework, which is a goal-oriented framework for analyzing competing alternatives and choosing the best one based on the goals for the SCADA system. The design algorithm is verified by applying it to a case study.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"2 1\",\"pages\":\"346-351\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient design of SCADA systems using minimum spanning trees and the NFR Framework
Supervisory Control and Data Acquisition (SCADA) systems are being increasingly used to monitor and control critical infrastructures ranging from computer networks to manufacturing, and proper design of SCADA systems is an important issue for developers of SCADA systems and their users. Current practice seems to center around purchasing a best-of-breed solution and configuring it to meet the expected system goals. In this paper we propose an efficient design approach based on minimum spanning trees and the NFR Framework(NFR standing for Non-Functional Requirements) wherein SCADA designs are captured in spanning trees and minimum spanning trees indicate the optimally weighted designs, and the most suitable among these weighted designs is chosen by employing the NFR Framework, which is a goal-oriented framework for analyzing competing alternatives and choosing the best one based on the goals for the SCADA system. The design algorithm is verified by applying it to a case study.