为FFF 3D打印螺杆挤出机建模

IF 0.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia Pub Date : 2022-06-24 DOI:10.30837/rt.2022.2.209.21
I. Razumov-Fryziuk, D. Gurin, D.O. Nikitin, R. Strilets, D. Blyzniuk
{"title":"为FFF 3D打印螺杆挤出机建模","authors":"I. Razumov-Fryziuk, D. Gurin, D.O. Nikitin, R. Strilets, D. Blyzniuk","doi":"10.30837/rt.2022.2.209.21","DOIUrl":null,"url":null,"abstract":"The article presents the development and modeling of a screw extruder for 3D printers operating on the FFF technology, namely, the Fused Filament Fabrication (“production by fusing threads”). Extruders, usually installed on FFF 3D printers, use a thermoplastic polymer filament as a material. There are two filament standards: 1.75mm and 2.85mm. The minimum cost of such a filament starts from $ 11 per kilogram (ABS plastic 1.75 mm). The cost of more expensive filaments can reach several thousand or even tens of thousands per kilogram (depending on the material, filler, the presence of inhibitors, dyes, etc.). The cost of the material is much higher than granulated primary plastics and even more so recycled materials. In addition, the extruder nozzle diameter is typically limited to 1.2mm for 1.75mm filament. Thus, when printing large products, for which the detail and roughness of vertical surfaces are not so important, increase in the diameter of the extruder nozzle will increase significantly the printing speed due to the increase in the thickness of the print layer and the width of the print line. \nTo produce filament, screw filament extruders are used, which work on the principle of injection molding machines. The authors propose a calculation of the parameters of a screw extruder for an FFF 3D printer, which will directly use granulated primary plastics or crushed plastic recyclables as a material. The use of a screw extruder will reduce the cost of the printed product and increase significantly the diameter of the extruder nozzle, which will significantly reduce the production time for large-sized products. \nWhen designing a screw extruder, it is necessary to adhere to two main strategies: minimizing the weight and size parameters of the extruder and ensuring the required linear productivity. On the one hand, the extruder must be as light as possible to be able to increase the printing speed, on the other hand, it must provide the necessary linear performance to be able to extrude plastic at printing speeds. Modeling is made for nozzles with a diameter of 1mm and 5mm. According to the calculation results, the screw extruder has a 3-fold and 37-fold margin of linear productivity, respectively.","PeriodicalId":41675,"journal":{"name":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling a screw extruder for FFF 3D printing\",\"authors\":\"I. Razumov-Fryziuk, D. Gurin, D.O. Nikitin, R. Strilets, D. Blyzniuk\",\"doi\":\"10.30837/rt.2022.2.209.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the development and modeling of a screw extruder for 3D printers operating on the FFF technology, namely, the Fused Filament Fabrication (“production by fusing threads”). Extruders, usually installed on FFF 3D printers, use a thermoplastic polymer filament as a material. There are two filament standards: 1.75mm and 2.85mm. The minimum cost of such a filament starts from $ 11 per kilogram (ABS plastic 1.75 mm). The cost of more expensive filaments can reach several thousand or even tens of thousands per kilogram (depending on the material, filler, the presence of inhibitors, dyes, etc.). The cost of the material is much higher than granulated primary plastics and even more so recycled materials. In addition, the extruder nozzle diameter is typically limited to 1.2mm for 1.75mm filament. Thus, when printing large products, for which the detail and roughness of vertical surfaces are not so important, increase in the diameter of the extruder nozzle will increase significantly the printing speed due to the increase in the thickness of the print layer and the width of the print line. \\nTo produce filament, screw filament extruders are used, which work on the principle of injection molding machines. The authors propose a calculation of the parameters of a screw extruder for an FFF 3D printer, which will directly use granulated primary plastics or crushed plastic recyclables as a material. The use of a screw extruder will reduce the cost of the printed product and increase significantly the diameter of the extruder nozzle, which will significantly reduce the production time for large-sized products. \\nWhen designing a screw extruder, it is necessary to adhere to two main strategies: minimizing the weight and size parameters of the extruder and ensuring the required linear productivity. On the one hand, the extruder must be as light as possible to be able to increase the printing speed, on the other hand, it must provide the necessary linear performance to be able to extrude plastic at printing speeds. Modeling is made for nozzles with a diameter of 1mm and 5mm. According to the calculation results, the screw extruder has a 3-fold and 37-fold margin of linear productivity, respectively.\",\"PeriodicalId\":41675,\"journal\":{\"name\":\"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30837/rt.2022.2.209.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30837/rt.2022.2.209.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了在FFF技术上运行的3D打印机的螺杆挤出机的开发和建模,即熔丝制造(“通过熔丝生产”)。挤出机通常安装在FFF 3D打印机上,使用热塑性聚合物长丝作为材料。灯丝标准有1.75mm和2.85mm两种。这种长丝的最低成本从每公斤11美元(ABS塑料1.75毫米)开始。更昂贵的长丝的成本可以达到每公斤几千甚至几万美元(取决于材料、填料、抑制剂、染料等的存在)。这种材料的成本远远高于颗粒状的原生塑料,甚至比再生材料还要高。此外,对于1.75mm长丝,挤出机喷嘴直径通常限制在1.2mm。因此,在打印大型产品时,对于垂直表面的细节和粗糙度不那么重要,由于打印层厚度和打印线宽度的增加,增加挤出机喷嘴的直径将显着提高打印速度。为了生产长丝,使用螺杆长丝挤出机,它的工作原理是注塑机。本文提出了一种用于FFF 3D打印机的螺杆挤出机的参数计算方法,该挤出机将直接使用颗粒状的初级塑料或破碎的可回收塑料作为材料。使用螺杆挤出机将降低印刷产品的成本,并显着增加挤出机喷嘴的直径,这将显着减少大尺寸产品的生产时间。在设计螺杆挤出机时,必须坚持两个主要策略:尽量减少挤出机的重量和尺寸参数,并确保所需的线性生产率。一方面,挤出机必须尽可能轻,以便能够提高印刷速度,另一方面,它必须提供必要的线性性能,以便能够在印刷速度下挤出塑料。对直径为1mm和5mm的喷嘴进行了建模。根据计算结果,螺杆挤出机的线性生产率边际分别为3倍和37倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling a screw extruder for FFF 3D printing
The article presents the development and modeling of a screw extruder for 3D printers operating on the FFF technology, namely, the Fused Filament Fabrication (“production by fusing threads”). Extruders, usually installed on FFF 3D printers, use a thermoplastic polymer filament as a material. There are two filament standards: 1.75mm and 2.85mm. The minimum cost of such a filament starts from $ 11 per kilogram (ABS plastic 1.75 mm). The cost of more expensive filaments can reach several thousand or even tens of thousands per kilogram (depending on the material, filler, the presence of inhibitors, dyes, etc.). The cost of the material is much higher than granulated primary plastics and even more so recycled materials. In addition, the extruder nozzle diameter is typically limited to 1.2mm for 1.75mm filament. Thus, when printing large products, for which the detail and roughness of vertical surfaces are not so important, increase in the diameter of the extruder nozzle will increase significantly the printing speed due to the increase in the thickness of the print layer and the width of the print line. To produce filament, screw filament extruders are used, which work on the principle of injection molding machines. The authors propose a calculation of the parameters of a screw extruder for an FFF 3D printer, which will directly use granulated primary plastics or crushed plastic recyclables as a material. The use of a screw extruder will reduce the cost of the printed product and increase significantly the diameter of the extruder nozzle, which will significantly reduce the production time for large-sized products. When designing a screw extruder, it is necessary to adhere to two main strategies: minimizing the weight and size parameters of the extruder and ensuring the required linear productivity. On the one hand, the extruder must be as light as possible to be able to increase the printing speed, on the other hand, it must provide the necessary linear performance to be able to extrude plastic at printing speeds. Modeling is made for nozzles with a diameter of 1mm and 5mm. According to the calculation results, the screw extruder has a 3-fold and 37-fold margin of linear productivity, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia
Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
0
期刊最新文献
Combined heat conductive boards with polyimide dielectrics Synthesis and analysis of the trace detector of air objects of an interrogating radar system Creating a call center test bench for load balancing Asterisk servers in a cluster Current state and development trends of class E oscillators: an overview Experimental studies of a lidar emitter built according to the oscillator-amplifier scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1