{"title":"电弧增材制造Inconel625-HSLA钢功能梯度材料","authors":"Jiarong Zhang, X. Di, Chengning Li, Xipeng Zhao, Lin Ba, Xin Jiang","doi":"10.1051/metal/2021063","DOIUrl":null,"url":null,"abstract":"Functional graded materials (FGMs) have been widely applied in many engineering fields, and are very potential to be the substitutions of dissimilar metal welding joints due to their overall performance. In this work, the Inconel625-high-strength low-alloy (HSLA) Steel FGM was fabricated by wire arc additive manufacturing (WAAM). The chemical composition distribution, microstructure, phase evolution and mechanical properties of the FGM were examined. With the increasing of HSLA Steel, the chemical composition appeared graded distribution, and the primary dendrite spacing was largest in graded region with 20%HSLA Steel and then gradually decreased. And the main microstructure of the FGM transformed from columnar dendrites to equiaxed dendrites. Laves phase precipitated along dendrites boundary when the content of HSLA Steel was lower than 70% and Nb-rich carbides precipitated when the content of HSLA Steel exceeded to 70%. Microhardness and tensile strength gradually decreased with ascending content of HSLA Steel, and had a drastic improvement (159HV to 228HV and 355Mpa to 733Mpa) when proportion of HSLA Steel increased from 70% to 80%.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"110 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Additive manufacturing of Inconel625-HSLA Steel functionally graded material by wire arc additive manufacturing\",\"authors\":\"Jiarong Zhang, X. Di, Chengning Li, Xipeng Zhao, Lin Ba, Xin Jiang\",\"doi\":\"10.1051/metal/2021063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional graded materials (FGMs) have been widely applied in many engineering fields, and are very potential to be the substitutions of dissimilar metal welding joints due to their overall performance. In this work, the Inconel625-high-strength low-alloy (HSLA) Steel FGM was fabricated by wire arc additive manufacturing (WAAM). The chemical composition distribution, microstructure, phase evolution and mechanical properties of the FGM were examined. With the increasing of HSLA Steel, the chemical composition appeared graded distribution, and the primary dendrite spacing was largest in graded region with 20%HSLA Steel and then gradually decreased. And the main microstructure of the FGM transformed from columnar dendrites to equiaxed dendrites. Laves phase precipitated along dendrites boundary when the content of HSLA Steel was lower than 70% and Nb-rich carbides precipitated when the content of HSLA Steel exceeded to 70%. Microhardness and tensile strength gradually decreased with ascending content of HSLA Steel, and had a drastic improvement (159HV to 228HV and 355Mpa to 733Mpa) when proportion of HSLA Steel increased from 70% to 80%.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021063\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021063","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Additive manufacturing of Inconel625-HSLA Steel functionally graded material by wire arc additive manufacturing
Functional graded materials (FGMs) have been widely applied in many engineering fields, and are very potential to be the substitutions of dissimilar metal welding joints due to their overall performance. In this work, the Inconel625-high-strength low-alloy (HSLA) Steel FGM was fabricated by wire arc additive manufacturing (WAAM). The chemical composition distribution, microstructure, phase evolution and mechanical properties of the FGM were examined. With the increasing of HSLA Steel, the chemical composition appeared graded distribution, and the primary dendrite spacing was largest in graded region with 20%HSLA Steel and then gradually decreased. And the main microstructure of the FGM transformed from columnar dendrites to equiaxed dendrites. Laves phase precipitated along dendrites boundary when the content of HSLA Steel was lower than 70% and Nb-rich carbides precipitated when the content of HSLA Steel exceeded to 70%. Microhardness and tensile strength gradually decreased with ascending content of HSLA Steel, and had a drastic improvement (159HV to 228HV and 355Mpa to 733Mpa) when proportion of HSLA Steel increased from 70% to 80%.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.