Wenjia Su, Wei Yang, Jiulong Li, Xiaoming Han, Junfeng Wang
{"title":"硅定向凝固过程中升级热区的数值研究","authors":"Wenjia Su, Wei Yang, Jiulong Li, Xiaoming Han, Junfeng Wang","doi":"10.1002/crat.202000180","DOIUrl":null,"url":null,"abstract":"2D global transient model for generation‐six (G6) GT‐style furnace and upgraded generation‐seven (G7) ALD‐style furnace in which all types of heat transfer and flow are included is established to investigate the thermal field, melt convection, melt–crystal (m–c) interface shape, thermal stress, growth rate, and Voronkov ratios in the growing silicon ingot. The modeling is verified by the heater power and temperature experiment. Simulation results show that the melt flow is relatively stronger as the furnace upgrades. For G7, a relatively higher thermal stress and growth rate are found due to the higher temperature gradient both in the horizontal and axial directions. Furthermore, unlike the optimized G6, G7 shows the overly convex m–c interface in the initial stage and edge nucleation throughout crystal growth stage.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"57 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Numerical Study of the Upgraded Hot Zone in Silicon Directional Solidification Process\",\"authors\":\"Wenjia Su, Wei Yang, Jiulong Li, Xiaoming Han, Junfeng Wang\",\"doi\":\"10.1002/crat.202000180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D global transient model for generation‐six (G6) GT‐style furnace and upgraded generation‐seven (G7) ALD‐style furnace in which all types of heat transfer and flow are included is established to investigate the thermal field, melt convection, melt–crystal (m–c) interface shape, thermal stress, growth rate, and Voronkov ratios in the growing silicon ingot. The modeling is verified by the heater power and temperature experiment. Simulation results show that the melt flow is relatively stronger as the furnace upgrades. For G7, a relatively higher thermal stress and growth rate are found due to the higher temperature gradient both in the horizontal and axial directions. Furthermore, unlike the optimized G6, G7 shows the overly convex m–c interface in the initial stage and edge nucleation throughout crystal growth stage.\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202000180\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202000180","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Numerical Study of the Upgraded Hot Zone in Silicon Directional Solidification Process
2D global transient model for generation‐six (G6) GT‐style furnace and upgraded generation‐seven (G7) ALD‐style furnace in which all types of heat transfer and flow are included is established to investigate the thermal field, melt convection, melt–crystal (m–c) interface shape, thermal stress, growth rate, and Voronkov ratios in the growing silicon ingot. The modeling is verified by the heater power and temperature experiment. Simulation results show that the melt flow is relatively stronger as the furnace upgrades. For G7, a relatively higher thermal stress and growth rate are found due to the higher temperature gradient both in the horizontal and axial directions. Furthermore, unlike the optimized G6, G7 shows the overly convex m–c interface in the initial stage and edge nucleation throughout crystal growth stage.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing