基于模型的智能配水网络攻击检测方案

Chuadhry Mujeeb Ahmed, C. Murguia, Justin Ruths
{"title":"基于模型的智能配水网络攻击检测方案","authors":"Chuadhry Mujeeb Ahmed, C. Murguia, Justin Ruths","doi":"10.1145/3052973.3053011","DOIUrl":null,"url":null,"abstract":"In this manuscript, we present a detailed case study about model-based attack detection procedures for Cyber-Physical Systems (CPSs). In particular, using EPANET (a simulation tool for water distribution systems), we simulate a Water Distribution Network (WDN). Using this data and sub-space identification techniques, an input-output Linear Time Invariant (LTI) model for the network is obtained. This model is used to derive a Kalman filter to estimate the evolution of the system dynamics. Then, residual variables are constructed by subtracting data coming from EPANET and the estimates of the Kalman filter. We use these residuals and the Bad-Data and the dynamic Cumulative Sum (CUSUM) change detection procedures for attack detection. Simulation results are presented - considering false data injection and zero-alarm attacks on sensor readings, and attacks on control input - to evaluate the performance of our model-based attack detection schemes. Finally, we derive upper bounds on the estimator-state deviation that zero-alarm attacks can induce.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Model-based Attack Detection Scheme for Smart Water Distribution Networks\",\"authors\":\"Chuadhry Mujeeb Ahmed, C. Murguia, Justin Ruths\",\"doi\":\"10.1145/3052973.3053011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we present a detailed case study about model-based attack detection procedures for Cyber-Physical Systems (CPSs). In particular, using EPANET (a simulation tool for water distribution systems), we simulate a Water Distribution Network (WDN). Using this data and sub-space identification techniques, an input-output Linear Time Invariant (LTI) model for the network is obtained. This model is used to derive a Kalman filter to estimate the evolution of the system dynamics. Then, residual variables are constructed by subtracting data coming from EPANET and the estimates of the Kalman filter. We use these residuals and the Bad-Data and the dynamic Cumulative Sum (CUSUM) change detection procedures for attack detection. Simulation results are presented - considering false data injection and zero-alarm attacks on sensor readings, and attacks on control input - to evaluate the performance of our model-based attack detection schemes. Finally, we derive upper bounds on the estimator-state deviation that zero-alarm attacks can induce.\",\"PeriodicalId\":20540,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3052973.3053011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3053011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

在这篇论文中,我们提出了一个关于网络物理系统(cps)基于模型的攻击检测程序的详细案例研究。特别地,我们使用EPANET(水分配系统的模拟工具),模拟了一个水分配网络(WDN)。利用这些数据和子空间识别技术,得到了网络的输入输出线性时不变(LTI)模型。利用该模型推导出卡尔曼滤波来估计系统动力学的演化。然后,通过减去来自EPANET的数据和卡尔曼滤波器的估计来构造残差变量。我们使用这些残差和坏数据以及动态累积和(CUSUM)变化检测程序进行攻击检测。给出了仿真结果-考虑假数据注入和对传感器读数的零报警攻击,以及对控制输入的攻击-来评估我们基于模型的攻击检测方案的性能。最后,给出了零报警攻击引起的估计器状态偏差的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-based Attack Detection Scheme for Smart Water Distribution Networks
In this manuscript, we present a detailed case study about model-based attack detection procedures for Cyber-Physical Systems (CPSs). In particular, using EPANET (a simulation tool for water distribution systems), we simulate a Water Distribution Network (WDN). Using this data and sub-space identification techniques, an input-output Linear Time Invariant (LTI) model for the network is obtained. This model is used to derive a Kalman filter to estimate the evolution of the system dynamics. Then, residual variables are constructed by subtracting data coming from EPANET and the estimates of the Kalman filter. We use these residuals and the Bad-Data and the dynamic Cumulative Sum (CUSUM) change detection procedures for attack detection. Simulation results are presented - considering false data injection and zero-alarm attacks on sensor readings, and attacks on control input - to evaluate the performance of our model-based attack detection schemes. Finally, we derive upper bounds on the estimator-state deviation that zero-alarm attacks can induce.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security How Discover a Malware using Model Checking Localization of Spoofing Devices using a Large-scale Air Traffic Surveillance System CoverUp: Privacy Through "Forced" Participation in Anonymous Communication Networks Session details: Password & Auth 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1