昆虫工业中新的脂质来源、监管方面及应用

OCL Pub Date : 2022-01-01 DOI:10.1051/ocl/2022017
Bénédicte Lorrette, L. Sánchez
{"title":"昆虫工业中新的脂质来源、监管方面及应用","authors":"Bénédicte Lorrette, L. Sánchez","doi":"10.1051/ocl/2022017","DOIUrl":null,"url":null,"abstract":"Edible insects constitute a sustainable and alternative source of nutrients: they have potential to become a valuable protein source for addressing animal and human markets addressing part of the global food demand. After protein, the second largest fraction of the insect is constituted of lipids. Lipids can represent 10 to 15% of the insect in dry matter, making this fraction one of the major co-products of insect industry. The composition of the insect fat may change in terms of quantity and composition of fatty acids profile. Insect species, stage of growth, extraction technologies are some parameters that can impact the fat quality. Many applications of insect fat are naturally focusing on animal nutrition to replace vegetal or fish oil in poultry or aqua feed. Health or human food applications are also envisaged to replace vegetal oil or butter in processed foods, and some technical and sensory tests are reported in this review. However, these last applications, concerning food are submitted to the regulation and especially to the Novel Food EU regulation. For these reasons, it is important to have more data about safety and innocuity of insect fats: a first study is dealing with this aspect, showing an absence of toxicity. Finally, some energy or surfactant applications can also be considered.","PeriodicalId":19440,"journal":{"name":"OCL","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"New lipid sources in the insect industry, regulatory aspects and applications\",\"authors\":\"Bénédicte Lorrette, L. Sánchez\",\"doi\":\"10.1051/ocl/2022017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edible insects constitute a sustainable and alternative source of nutrients: they have potential to become a valuable protein source for addressing animal and human markets addressing part of the global food demand. After protein, the second largest fraction of the insect is constituted of lipids. Lipids can represent 10 to 15% of the insect in dry matter, making this fraction one of the major co-products of insect industry. The composition of the insect fat may change in terms of quantity and composition of fatty acids profile. Insect species, stage of growth, extraction technologies are some parameters that can impact the fat quality. Many applications of insect fat are naturally focusing on animal nutrition to replace vegetal or fish oil in poultry or aqua feed. Health or human food applications are also envisaged to replace vegetal oil or butter in processed foods, and some technical and sensory tests are reported in this review. However, these last applications, concerning food are submitted to the regulation and especially to the Novel Food EU regulation. For these reasons, it is important to have more data about safety and innocuity of insect fats: a first study is dealing with this aspect, showing an absence of toxicity. Finally, some energy or surfactant applications can also be considered.\",\"PeriodicalId\":19440,\"journal\":{\"name\":\"OCL\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ocl/2022017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ocl/2022017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

食用昆虫是一种可持续的、可替代的营养来源:它们有可能成为满足动物和人类市场的宝贵蛋白质来源,从而满足部分全球粮食需求。在蛋白质之后,昆虫的第二大成分是脂质。在干物质中,脂类可占昆虫的10%至15%,使其成为昆虫工业的主要副产品之一。昆虫脂肪的组成可能在脂肪酸的数量和组成方面发生变化。昆虫种类、生长阶段、提取工艺是影响油脂品质的参数。昆虫脂肪的许多应用自然侧重于动物营养,以取代家禽或水产饲料中的植物油或鱼油。健康或人类食品应用也有望取代加工食品中的植物油或黄油,本综述报告了一些技术和感官测试。然而,这些关于食品的最后申请是提交给法规的,特别是新食品欧盟法规。由于这些原因,有更多关于昆虫脂肪的安全性和无害性的数据是很重要的:第一项研究正在处理这方面的问题,表明没有毒性。最后,还可以考虑一些能量或表面活性剂的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New lipid sources in the insect industry, regulatory aspects and applications
Edible insects constitute a sustainable and alternative source of nutrients: they have potential to become a valuable protein source for addressing animal and human markets addressing part of the global food demand. After protein, the second largest fraction of the insect is constituted of lipids. Lipids can represent 10 to 15% of the insect in dry matter, making this fraction one of the major co-products of insect industry. The composition of the insect fat may change in terms of quantity and composition of fatty acids profile. Insect species, stage of growth, extraction technologies are some parameters that can impact the fat quality. Many applications of insect fat are naturally focusing on animal nutrition to replace vegetal or fish oil in poultry or aqua feed. Health or human food applications are also envisaged to replace vegetal oil or butter in processed foods, and some technical and sensory tests are reported in this review. However, these last applications, concerning food are submitted to the regulation and especially to the Novel Food EU regulation. For these reasons, it is important to have more data about safety and innocuity of insect fats: a first study is dealing with this aspect, showing an absence of toxicity. Finally, some energy or surfactant applications can also be considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
OCL
OCL
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the sensory properties, volatile aroma compounds and functional food potentials of cold-press produced mahaleb (Prunus mahaleb L.) seed oil Soybean oleosome-based oleogels via polymer-bridging based structuring. Mechanical properties at large deformations Labor productivity assessment of three different mechanized harvest systems in Colombian oil palm crops Effect of extraction process on quality of oil from Asphodelus tenuifolius seeds Response of oil producing camelina (Camelina sativa L.) crop to different agroecology and rate of NP fertilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1