量子成像与信息

IF 19 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reports on Progress in Physics Pub Date : 2019-10-22 DOI:10.1088/1361-6633/ab5005
O. Magaña-Loaiza, R. Boyd
{"title":"量子成像与信息","authors":"O. Magaña-Loaiza, R. Boyd","doi":"10.1088/1361-6633/ab5005","DOIUrl":null,"url":null,"abstract":"The maturity of fields such as optical physics and quantum optics has brought with it a new era where the photon represents a promising information resource. In the past few years, scientists and engineers have exploited multiple degrees of freedom of the photon to perform information processing for a wide variety of applications. Of particular importance, the transverse spatial degree of freedom has offered a flexible platform to test complex quantum information protocols in a relatively simple fashion. In this regard, novel imaging techniques that exploit the quantum properties of light have also been investigated. In this review article, we define the fundamental parameters that describe the spatial wavefunction of the photon and establish their importance for applications in quantum information processing. More specifically, we describe the underlying physics behind remarkable protocols in which information is processed through high-dimensional spatial states of photons with sub-shot-noise levels or where quantum images with unique resolution features are formed. We also discuss the fundamental role that certain imaging techniques have played in the development of novel methods for quantum information processing and vice versa.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":null,"pages":null},"PeriodicalIF":19.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Quantum imaging and information\",\"authors\":\"O. Magaña-Loaiza, R. Boyd\",\"doi\":\"10.1088/1361-6633/ab5005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maturity of fields such as optical physics and quantum optics has brought with it a new era where the photon represents a promising information resource. In the past few years, scientists and engineers have exploited multiple degrees of freedom of the photon to perform information processing for a wide variety of applications. Of particular importance, the transverse spatial degree of freedom has offered a flexible platform to test complex quantum information protocols in a relatively simple fashion. In this regard, novel imaging techniques that exploit the quantum properties of light have also been investigated. In this review article, we define the fundamental parameters that describe the spatial wavefunction of the photon and establish their importance for applications in quantum information processing. More specifically, we describe the underlying physics behind remarkable protocols in which information is processed through high-dimensional spatial states of photons with sub-shot-noise levels or where quantum images with unique resolution features are formed. We also discuss the fundamental role that certain imaging techniques have played in the development of novel methods for quantum information processing and vice versa.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ab5005\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ab5005","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 31

摘要

随着光学物理、量子光学等领域的成熟,光子作为一种具有发展前景的信息资源进入了一个新的时代。在过去的几年里,科学家和工程师已经利用光子的多个自由度来执行各种应用的信息处理。特别重要的是,横向空间自由度提供了一个灵活的平台,以相对简单的方式测试复杂的量子信息协议。在这方面,利用光的量子特性的新型成像技术也得到了研究。在这篇综述文章中,我们定义了描述光子空间波函数的基本参数,并建立了它们在量子信息处理应用中的重要性。更具体地说,我们描述了卓越协议背后的基础物理,在这些协议中,信息通过具有亚散噪声水平的光子的高维空间状态进行处理,或者形成具有独特分辨率特征的量子图像。我们还讨论了某些成像技术在量子信息处理新方法的发展中所起的基本作用,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum imaging and information
The maturity of fields such as optical physics and quantum optics has brought with it a new era where the photon represents a promising information resource. In the past few years, scientists and engineers have exploited multiple degrees of freedom of the photon to perform information processing for a wide variety of applications. Of particular importance, the transverse spatial degree of freedom has offered a flexible platform to test complex quantum information protocols in a relatively simple fashion. In this regard, novel imaging techniques that exploit the quantum properties of light have also been investigated. In this review article, we define the fundamental parameters that describe the spatial wavefunction of the photon and establish their importance for applications in quantum information processing. More specifically, we describe the underlying physics behind remarkable protocols in which information is processed through high-dimensional spatial states of photons with sub-shot-noise levels or where quantum images with unique resolution features are formed. We also discuss the fundamental role that certain imaging techniques have played in the development of novel methods for quantum information processing and vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Progress in Physics
Reports on Progress in Physics 物理-物理:综合
CiteScore
31.90
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.
期刊最新文献
Key Issues Review: Useful autonomous quantum machines. Recent developments in tornado theory and observations. A comprehensive review of quantum machine learning: from NISQ to fault tolerance. Physics and technology of Laser Lightning Control. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1