{"title":"同步x射线辐射损伤对高压配位聚合物相变的影响。","authors":"I. Collings, M. Hanfland","doi":"10.1107/s2052520622001305","DOIUrl":null,"url":null,"abstract":"The high-pressure phase-transition behaviour of metal-organic frameworks and coordination polymers upon varying degrees of X-ray irradiation are highlighted with four example studies. These show that, in certain cases, the radiation damage, while not extreme in changing unit-cell values, can impact the existence of a phase transition. In particular, pressure-induced phase transitions are suppressed after a certain absorbed dose threshold is reached for the sample. This is thought to be due to partial amorphization and/or defect formation in the sample, hindering the co-operative structural distortions needed for a phase transition. The high-pressure experiments were conducted with several crystals within the sample chamber in order to measure crystals with minimal X-ray irradiation at the highest pressures, which are compared with the crystals measured continuously upon pressure increase. Ways to minimize radiation damage are also discussed within the frame of high-pressure experiments.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"44 1","pages":"100-106"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of synchrotron X-ray radiation damage on phase transitions in coordination polymers at high pressure.\",\"authors\":\"I. Collings, M. Hanfland\",\"doi\":\"10.1107/s2052520622001305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high-pressure phase-transition behaviour of metal-organic frameworks and coordination polymers upon varying degrees of X-ray irradiation are highlighted with four example studies. These show that, in certain cases, the radiation damage, while not extreme in changing unit-cell values, can impact the existence of a phase transition. In particular, pressure-induced phase transitions are suppressed after a certain absorbed dose threshold is reached for the sample. This is thought to be due to partial amorphization and/or defect formation in the sample, hindering the co-operative structural distortions needed for a phase transition. The high-pressure experiments were conducted with several crystals within the sample chamber in order to measure crystals with minimal X-ray irradiation at the highest pressures, which are compared with the crystals measured continuously upon pressure increase. Ways to minimize radiation damage are also discussed within the frame of high-pressure experiments.\",\"PeriodicalId\":7080,\"journal\":{\"name\":\"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials\",\"volume\":\"44 1\",\"pages\":\"100-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/s2052520622001305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/s2052520622001305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of synchrotron X-ray radiation damage on phase transitions in coordination polymers at high pressure.
The high-pressure phase-transition behaviour of metal-organic frameworks and coordination polymers upon varying degrees of X-ray irradiation are highlighted with four example studies. These show that, in certain cases, the radiation damage, while not extreme in changing unit-cell values, can impact the existence of a phase transition. In particular, pressure-induced phase transitions are suppressed after a certain absorbed dose threshold is reached for the sample. This is thought to be due to partial amorphization and/or defect formation in the sample, hindering the co-operative structural distortions needed for a phase transition. The high-pressure experiments were conducted with several crystals within the sample chamber in order to measure crystals with minimal X-ray irradiation at the highest pressures, which are compared with the crystals measured continuously upon pressure increase. Ways to minimize radiation damage are also discussed within the frame of high-pressure experiments.