{"title":"芘降解菌株(LOP-9金黄色葡萄球菌和GWP-2万巴氏分枝杆菌)及其代谢产物的检测","authors":"Beema Kumari, Harish Chandra, Ram Chandra","doi":"10.1016/j.clce.2022.100080","DOIUrl":null,"url":null,"abstract":"<div><p>Pyrenes are polycyclic aromatic hydrocarbons responsible for an array of health hazards and environmental abuses. The remediation of such compounds is remaining as an area of interest for scientist community. The present study aimed for isolation and screening of pyrene degrading bacterial strains optimized at various environmental and nutritional requirement to assess their potential for pyrene degradability. The result have revealed that isolated strain GWP-2 and LOP-9 showed degradation of pyrene 86% and 82.1%, respectively at temperature 37 °C and pH 9 in presence of glucose(1%) and peptone(0.5%) within 15 days of incubated at 140 rpm in temperature controlled shaker. The variation of temperature and pH from optimized condition decrease the performance of isolated strains. The metabolite characterization through GCMS showed strain GWP-2 9,12-octadecadienoic acid, Oxido-4,17-cholestadian-3a,16a-diol, Heptadecane,2,6,10,15-tetramethyl, Heptacosane, 1,2-benzenedicarboxylic acid and Octadecane 3-ethyl-5-(2-ethylbutyl) as major product while LOP-9 showed their major product as Disiloxane,hexamethyl-(CAS), Benzene -1,2,4-triol(trimethylsilyl) ester, Octahydroquinoline-6-carboxylic acid(phenylethyl amide) and 4-methyl1,4‑hydroxy-6-(2,5,6,6′-tetramethylcyclohex-1-en-1-yl)hex-2-ynyl acetate after 15 days degradation. Many compounds detected in control were completely removed. The isolated strains were identified as <em>Mycobacterium vaanbaalenii</em> GWP-2 (ON715011) and <em>Staphylococcus aureus</em> LOP-9(ON715121) based their 16s-rRNA sequencing. These potential strains may be useful for detoxification of pyrene containing pollution in soil and water ecosystem.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277278232200078X/pdfft?md5=91428f15805e6e3b543fe47bfcea1eca&pid=1-s2.0-S277278232200078X-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Detection of pyrene degrading bacterial strains (LOP-9 Staphylococcus aureus and GWP-2 Mycobacterium vaanbaalenii) and their metabolic products\",\"authors\":\"Beema Kumari, Harish Chandra, Ram Chandra\",\"doi\":\"10.1016/j.clce.2022.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pyrenes are polycyclic aromatic hydrocarbons responsible for an array of health hazards and environmental abuses. The remediation of such compounds is remaining as an area of interest for scientist community. The present study aimed for isolation and screening of pyrene degrading bacterial strains optimized at various environmental and nutritional requirement to assess their potential for pyrene degradability. The result have revealed that isolated strain GWP-2 and LOP-9 showed degradation of pyrene 86% and 82.1%, respectively at temperature 37 °C and pH 9 in presence of glucose(1%) and peptone(0.5%) within 15 days of incubated at 140 rpm in temperature controlled shaker. The variation of temperature and pH from optimized condition decrease the performance of isolated strains. The metabolite characterization through GCMS showed strain GWP-2 9,12-octadecadienoic acid, Oxido-4,17-cholestadian-3a,16a-diol, Heptadecane,2,6,10,15-tetramethyl, Heptacosane, 1,2-benzenedicarboxylic acid and Octadecane 3-ethyl-5-(2-ethylbutyl) as major product while LOP-9 showed their major product as Disiloxane,hexamethyl-(CAS), Benzene -1,2,4-triol(trimethylsilyl) ester, Octahydroquinoline-6-carboxylic acid(phenylethyl amide) and 4-methyl1,4‑hydroxy-6-(2,5,6,6′-tetramethylcyclohex-1-en-1-yl)hex-2-ynyl acetate after 15 days degradation. Many compounds detected in control were completely removed. The isolated strains were identified as <em>Mycobacterium vaanbaalenii</em> GWP-2 (ON715011) and <em>Staphylococcus aureus</em> LOP-9(ON715121) based their 16s-rRNA sequencing. These potential strains may be useful for detoxification of pyrene containing pollution in soil and water ecosystem.</p></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"4 \",\"pages\":\"Article 100080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277278232200078X/pdfft?md5=91428f15805e6e3b543fe47bfcea1eca&pid=1-s2.0-S277278232200078X-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277278232200078X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277278232200078X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of pyrene degrading bacterial strains (LOP-9 Staphylococcus aureus and GWP-2 Mycobacterium vaanbaalenii) and their metabolic products
Pyrenes are polycyclic aromatic hydrocarbons responsible for an array of health hazards and environmental abuses. The remediation of such compounds is remaining as an area of interest for scientist community. The present study aimed for isolation and screening of pyrene degrading bacterial strains optimized at various environmental and nutritional requirement to assess their potential for pyrene degradability. The result have revealed that isolated strain GWP-2 and LOP-9 showed degradation of pyrene 86% and 82.1%, respectively at temperature 37 °C and pH 9 in presence of glucose(1%) and peptone(0.5%) within 15 days of incubated at 140 rpm in temperature controlled shaker. The variation of temperature and pH from optimized condition decrease the performance of isolated strains. The metabolite characterization through GCMS showed strain GWP-2 9,12-octadecadienoic acid, Oxido-4,17-cholestadian-3a,16a-diol, Heptadecane,2,6,10,15-tetramethyl, Heptacosane, 1,2-benzenedicarboxylic acid and Octadecane 3-ethyl-5-(2-ethylbutyl) as major product while LOP-9 showed their major product as Disiloxane,hexamethyl-(CAS), Benzene -1,2,4-triol(trimethylsilyl) ester, Octahydroquinoline-6-carboxylic acid(phenylethyl amide) and 4-methyl1,4‑hydroxy-6-(2,5,6,6′-tetramethylcyclohex-1-en-1-yl)hex-2-ynyl acetate after 15 days degradation. Many compounds detected in control were completely removed. The isolated strains were identified as Mycobacterium vaanbaalenii GWP-2 (ON715011) and Staphylococcus aureus LOP-9(ON715121) based their 16s-rRNA sequencing. These potential strains may be useful for detoxification of pyrene containing pollution in soil and water ecosystem.