仅利用探测车辆轨迹数据对城市路网的起点-终点流量进行动态估算

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2023-05-02 DOI:10.1080/15472450.2023.2209910
{"title":"仅利用探测车辆轨迹数据对城市路网的起点-终点流量进行动态估算","authors":"","doi":"10.1080/15472450.2023.2209910","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic origin–destination (OD) flow is a fundamental input for dynamic network models and simulators. Numerous studies have conducted dynamic OD estimations based on fixed detectors, where a high device coverage rate and data quality are often required to accomplish the desired results. Several existing methods have used probe vehicle trajectories as an additional data source, and generalized least squares (GLS) is commonly recognized as an effective framework. However, the prior matrices used in these models either came from historical data or data obtained by uniform scaling that neglected the variation in penetration rates and suffer from sparsity issues. Moreover, the microscopic information contained in the high-resolution probe vehicle trajectories has not been fully utilized. The possibility of estimating OD flows using only vehicle trajectories without external information is rarely discussed in current literature. Therefore, this paper introduces a dynamic OD flow estimation model solely using probe vehicle trajectories. In the proposed model, two methods based on probe OD pair distribution are proposed to infer prior OD flows. Then the GLS framework is extended by including link travel times as another objective term, and the solution algorithm is adapted to deal with uncertain priors. To validate the proposed model, extensive experiments were conducted on a simulation network. The results show that the proposed model could reliably estimate dynamic OD flows and showed superiority to two existing models. In sensitivity analysis concerning the penetration rate and degree of saturation, the proposed model presented satisfactory performance and could adapt to various conditions.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 5","pages":"Pages 756-773"},"PeriodicalIF":2.8000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic origin–destination flow estimation for urban road network solely using probe vehicle trajectory data\",\"authors\":\"\",\"doi\":\"10.1080/15472450.2023.2209910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic origin–destination (OD) flow is a fundamental input for dynamic network models and simulators. Numerous studies have conducted dynamic OD estimations based on fixed detectors, where a high device coverage rate and data quality are often required to accomplish the desired results. Several existing methods have used probe vehicle trajectories as an additional data source, and generalized least squares (GLS) is commonly recognized as an effective framework. However, the prior matrices used in these models either came from historical data or data obtained by uniform scaling that neglected the variation in penetration rates and suffer from sparsity issues. Moreover, the microscopic information contained in the high-resolution probe vehicle trajectories has not been fully utilized. The possibility of estimating OD flows using only vehicle trajectories without external information is rarely discussed in current literature. Therefore, this paper introduces a dynamic OD flow estimation model solely using probe vehicle trajectories. In the proposed model, two methods based on probe OD pair distribution are proposed to infer prior OD flows. Then the GLS framework is extended by including link travel times as another objective term, and the solution algorithm is adapted to deal with uncertain priors. To validate the proposed model, extensive experiments were conducted on a simulation network. The results show that the proposed model could reliably estimate dynamic OD flows and showed superiority to two existing models. In sensitivity analysis concerning the penetration rate and degree of saturation, the proposed model presented satisfactory performance and could adapt to various conditions.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 5\",\"pages\":\"Pages 756-773\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023000816\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000816","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

动态原点-目的地(OD)流是动态网络模型和模拟器的基本输入。许多研究都基于固定探测器进行了动态 OD 估算,而要想获得理想的结果,通常需要较高的设备覆盖率和数据质量。现有的几种方法将探测车轨迹作为额外的数据源,广义最小二乘法(GLS)是公认的有效框架。然而,这些模型中使用的先验矩阵要么来自历史数据,要么是通过均匀缩放获得的数据,忽略了穿透率的变化,存在稀疏性问题。此外,高分辨率探测车轨迹中包含的微观信息也没有得到充分利用。仅使用车辆轨迹而不使用外部信息来估算 OD 流量的可能性在目前的文献中鲜有讨论。因此,本文介绍了一种仅使用探测车辆轨迹的动态 OD 流量估算模型。在提议的模型中,提出了两种基于探测 OD 对分布的方法来推断先验 OD 流量。然后,通过将链路旅行时间作为另一个目标项来扩展 GLS 框架,并调整求解算法以处理不确定的先验值。为了验证所提出的模型,我们在模拟网络上进行了大量实验。结果表明,所提出的模型能够可靠地估计动态 OD 流量,并显示出优于两个现有模型的性能。在有关渗透率和饱和度的敏感性分析中,所提出的模型表现令人满意,并能适应各种条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic origin–destination flow estimation for urban road network solely using probe vehicle trajectory data

Dynamic origin–destination (OD) flow is a fundamental input for dynamic network models and simulators. Numerous studies have conducted dynamic OD estimations based on fixed detectors, where a high device coverage rate and data quality are often required to accomplish the desired results. Several existing methods have used probe vehicle trajectories as an additional data source, and generalized least squares (GLS) is commonly recognized as an effective framework. However, the prior matrices used in these models either came from historical data or data obtained by uniform scaling that neglected the variation in penetration rates and suffer from sparsity issues. Moreover, the microscopic information contained in the high-resolution probe vehicle trajectories has not been fully utilized. The possibility of estimating OD flows using only vehicle trajectories without external information is rarely discussed in current literature. Therefore, this paper introduces a dynamic OD flow estimation model solely using probe vehicle trajectories. In the proposed model, two methods based on probe OD pair distribution are proposed to infer prior OD flows. Then the GLS framework is extended by including link travel times as another objective term, and the solution algorithm is adapted to deal with uncertain priors. To validate the proposed model, extensive experiments were conducted on a simulation network. The results show that the proposed model could reliably estimate dynamic OD flows and showed superiority to two existing models. In sensitivity analysis concerning the penetration rate and degree of saturation, the proposed model presented satisfactory performance and could adapt to various conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1