A. Pituganova, Taofik H. Nassan, M. Amro, I. Minkhanov, M. Varfolomeev, A. Bolotov
{"title":"Romashkinskoye油田Oykino-Altuninsky隆起特稠油热采方案试验与数值分析","authors":"A. Pituganova, Taofik H. Nassan, M. Amro, I. Minkhanov, M. Varfolomeev, A. Bolotov","doi":"10.2523/iptc-22425-ms","DOIUrl":null,"url":null,"abstract":"\n Crude oil production from conventional oil reservoirs is declining owing to heavy exploitation to meet the global energy market demand which is growing on a yearly basis. Unconventional oil resources, e.g. extra-heavy oil and bitumen, can compensate for this decline if appropriate enhanced oil recovery (EOR) methods are developed to enable economic flow from these resources. The main objective of this study is to set the best practice for the extra-heavy oil production of the Oykino-Altuninsky uplift of the Romashkinskoye oilfield (Tatarstan Republic, Russia). A series of experimental tests are applied on a real unextracted unconsolidated core sample from Romashkinskoye oilfield where the viscosity of the crude oil is above 600,000 cP at reservoir conditions. Different recovery schemes are tested experimentally and sequentially, namely: water flooding, hot water flooding, steam flooding, and finally in-situ combustion (ISC). Furthermore, the complete experimental run is simulated by a standard nonisothermal simulator and the results are compared to the experiments. On contrary to what was expected hot water at 100°C didn’t achieve any recovery from the sample and steam injection recovered only 11,5% of OOIP. ISC-is also known as fire flooding-attained the best recovery which reached 45% after steam flooding. Complete SARA analysis of the original oil and produced oil by steam and ISC is implemented to understand the mechanisms of each process. Numerical modeling is applied to the corresponding laboratory experiments and the results for water, hot water, and steam flooding were in good agreement with the experimental results while the in-situ combustion simulation showed a better recovery factor than experiments. The laboratory and numerical experiments will improve our understanding of the recovery options of Oykino-Altuninsky uplift of the Romashkinskoye oilfield and help the developers to choose the best production sequence for this oilfield particularly. Moreover, the experiments will provide inputs for the field-size numerical model after running more experiments on unconsolidated and consolidated cores.","PeriodicalId":11027,"journal":{"name":"Day 3 Wed, February 23, 2022","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and Numerical Analysis of Thermal EOR Recovery Schemes for Extra-Heavy Oil of the Oykino-Altuninsky Uplift of the Romashkinskoye Oilfield\",\"authors\":\"A. Pituganova, Taofik H. Nassan, M. Amro, I. Minkhanov, M. Varfolomeev, A. Bolotov\",\"doi\":\"10.2523/iptc-22425-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Crude oil production from conventional oil reservoirs is declining owing to heavy exploitation to meet the global energy market demand which is growing on a yearly basis. Unconventional oil resources, e.g. extra-heavy oil and bitumen, can compensate for this decline if appropriate enhanced oil recovery (EOR) methods are developed to enable economic flow from these resources. The main objective of this study is to set the best practice for the extra-heavy oil production of the Oykino-Altuninsky uplift of the Romashkinskoye oilfield (Tatarstan Republic, Russia). A series of experimental tests are applied on a real unextracted unconsolidated core sample from Romashkinskoye oilfield where the viscosity of the crude oil is above 600,000 cP at reservoir conditions. Different recovery schemes are tested experimentally and sequentially, namely: water flooding, hot water flooding, steam flooding, and finally in-situ combustion (ISC). Furthermore, the complete experimental run is simulated by a standard nonisothermal simulator and the results are compared to the experiments. On contrary to what was expected hot water at 100°C didn’t achieve any recovery from the sample and steam injection recovered only 11,5% of OOIP. ISC-is also known as fire flooding-attained the best recovery which reached 45% after steam flooding. Complete SARA analysis of the original oil and produced oil by steam and ISC is implemented to understand the mechanisms of each process. Numerical modeling is applied to the corresponding laboratory experiments and the results for water, hot water, and steam flooding were in good agreement with the experimental results while the in-situ combustion simulation showed a better recovery factor than experiments. The laboratory and numerical experiments will improve our understanding of the recovery options of Oykino-Altuninsky uplift of the Romashkinskoye oilfield and help the developers to choose the best production sequence for this oilfield particularly. Moreover, the experiments will provide inputs for the field-size numerical model after running more experiments on unconsolidated and consolidated cores.\",\"PeriodicalId\":11027,\"journal\":{\"name\":\"Day 3 Wed, February 23, 2022\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, February 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22425-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, February 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22425-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Numerical Analysis of Thermal EOR Recovery Schemes for Extra-Heavy Oil of the Oykino-Altuninsky Uplift of the Romashkinskoye Oilfield
Crude oil production from conventional oil reservoirs is declining owing to heavy exploitation to meet the global energy market demand which is growing on a yearly basis. Unconventional oil resources, e.g. extra-heavy oil and bitumen, can compensate for this decline if appropriate enhanced oil recovery (EOR) methods are developed to enable economic flow from these resources. The main objective of this study is to set the best practice for the extra-heavy oil production of the Oykino-Altuninsky uplift of the Romashkinskoye oilfield (Tatarstan Republic, Russia). A series of experimental tests are applied on a real unextracted unconsolidated core sample from Romashkinskoye oilfield where the viscosity of the crude oil is above 600,000 cP at reservoir conditions. Different recovery schemes are tested experimentally and sequentially, namely: water flooding, hot water flooding, steam flooding, and finally in-situ combustion (ISC). Furthermore, the complete experimental run is simulated by a standard nonisothermal simulator and the results are compared to the experiments. On contrary to what was expected hot water at 100°C didn’t achieve any recovery from the sample and steam injection recovered only 11,5% of OOIP. ISC-is also known as fire flooding-attained the best recovery which reached 45% after steam flooding. Complete SARA analysis of the original oil and produced oil by steam and ISC is implemented to understand the mechanisms of each process. Numerical modeling is applied to the corresponding laboratory experiments and the results for water, hot water, and steam flooding were in good agreement with the experimental results while the in-situ combustion simulation showed a better recovery factor than experiments. The laboratory and numerical experiments will improve our understanding of the recovery options of Oykino-Altuninsky uplift of the Romashkinskoye oilfield and help the developers to choose the best production sequence for this oilfield particularly. Moreover, the experiments will provide inputs for the field-size numerical model after running more experiments on unconsolidated and consolidated cores.