一种能承受多重永久通信故障的广域电力系统稳定器的设计

Q1 Social Sciences Electricity Journal Pub Date : 2023-05-05 DOI:10.3390/electricity4020010
M. E. Bento
{"title":"一种能承受多重永久通信故障的广域电力系统稳定器的设计","authors":"M. E. Bento","doi":"10.3390/electricity4020010","DOIUrl":null,"url":null,"abstract":"Wide-Area Power System Stabilizers (WAPSSs) are damping controllers used in power systems that employ data from Phasor Measurement Units (PMUs). WAPSSs are capable of providing high damping rates for the low-frequency oscillation modes, especially the inter-area modes. Oscillation modes can destabilize power systems if they are not correctly identified and adequately damped. However, WAPSS communication channels may be subject to failures or cyber-attacks that affect their proper operation and may even cause system instability. This research proposes a method based on an optimization model for the design of a WAPSS robust to multiple permanent communication failures. The results of applications of the proposed method in the IEEE 68-bus system show the ability of the WAPSS design to be robust to a possible number of permanent communication failures. Above this value, the combinations of failures and processing time are high and they make it difficult to obtain high damping rates for the closed-loop control system. The application and comparison of different optimization techniques are valid and showed a superior performance of the Grey Wolf Optimizer in solving the optimization problem.","PeriodicalId":35642,"journal":{"name":"Electricity Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design of a Wide-Area Power System Stabilizer to Tolerate Multiple Permanent Communication Failures\",\"authors\":\"M. E. Bento\",\"doi\":\"10.3390/electricity4020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide-Area Power System Stabilizers (WAPSSs) are damping controllers used in power systems that employ data from Phasor Measurement Units (PMUs). WAPSSs are capable of providing high damping rates for the low-frequency oscillation modes, especially the inter-area modes. Oscillation modes can destabilize power systems if they are not correctly identified and adequately damped. However, WAPSS communication channels may be subject to failures or cyber-attacks that affect their proper operation and may even cause system instability. This research proposes a method based on an optimization model for the design of a WAPSS robust to multiple permanent communication failures. The results of applications of the proposed method in the IEEE 68-bus system show the ability of the WAPSS design to be robust to a possible number of permanent communication failures. Above this value, the combinations of failures and processing time are high and they make it difficult to obtain high damping rates for the closed-loop control system. The application and comparison of different optimization techniques are valid and showed a superior performance of the Grey Wolf Optimizer in solving the optimization problem.\",\"PeriodicalId\":35642,\"journal\":{\"name\":\"Electricity Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electricity Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electricity4020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electricity Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electricity4020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3

摘要

广域电力系统稳定器(wapss)是电力系统中使用的阻尼控制器,它采用相量测量单元(pmu)的数据。wapss能够为低频振荡模式,特别是区域间振荡模式提供高阻尼率。振荡模态如果不能正确识别和充分阻尼,会使电力系统不稳定。但是,WAPSS通信通道可能会受到故障或网络攻击,影响其正常运行,甚至可能导致系统不稳定。本文提出了一种基于优化模型的WAPSS抗多次永久通信故障的设计方法。该方法在IEEE 68总线系统中的应用结果表明,WAPSS设计对可能出现的大量永久通信故障具有鲁棒性。在此值以上,故障和处理时间的组合很高,这使得闭环控制系统难以获得高阻尼率。通过对不同优化技术的应用和比较,证明了灰狼优化器在解决优化问题方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a Wide-Area Power System Stabilizer to Tolerate Multiple Permanent Communication Failures
Wide-Area Power System Stabilizers (WAPSSs) are damping controllers used in power systems that employ data from Phasor Measurement Units (PMUs). WAPSSs are capable of providing high damping rates for the low-frequency oscillation modes, especially the inter-area modes. Oscillation modes can destabilize power systems if they are not correctly identified and adequately damped. However, WAPSS communication channels may be subject to failures or cyber-attacks that affect their proper operation and may even cause system instability. This research proposes a method based on an optimization model for the design of a WAPSS robust to multiple permanent communication failures. The results of applications of the proposed method in the IEEE 68-bus system show the ability of the WAPSS design to be robust to a possible number of permanent communication failures. Above this value, the combinations of failures and processing time are high and they make it difficult to obtain high damping rates for the closed-loop control system. The application and comparison of different optimization techniques are valid and showed a superior performance of the Grey Wolf Optimizer in solving the optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electricity Journal
Electricity Journal Business, Management and Accounting-Business and International Management
CiteScore
5.80
自引率
0.00%
发文量
95
审稿时长
31 days
期刊介绍: The Electricity Journal is the leading journal in electric power policy. The journal deals primarily with fuel diversity and the energy mix needed for optimal energy market performance, and therefore covers the full spectrum of energy, from coal, nuclear, natural gas and oil, to renewable energy sources including hydro, solar, geothermal and wind power. Recently, the journal has been publishing in emerging areas including energy storage, microgrid strategies, dynamic pricing, cyber security, climate change, cap and trade, distributed generation, net metering, transmission and generation market dynamics. The Electricity Journal aims to bring together the most thoughtful and influential thinkers globally from across industry, practitioners, government, policymakers and academia. The Editorial Advisory Board is comprised of electric industry thought leaders who have served as regulators, consultants, litigators, and market advocates. Their collective experience helps ensure that the most relevant and thought-provoking issues are presented to our readers, and helps navigate the emerging shape and design of the electricity/energy industry.
期刊最新文献
Critical infrastructure organisational resilience assessment: A case study of Malawi’s power grid operator The role of political parties in the public perception of nuclear energy The political economy of electricity market coupling: Comparing experiences from Europe and the United States Residential electricity efficiency and implications for Vietnam's clean energy transition With uncertainty comes opportunity: Repurposing coal assets to create new beginnings in the U.S.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1