ARIMA与LSTM在隧道营运期结构变形预测中的比较

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Atomic Data and Nuclear Data Tables Pub Date : 2023-06-13 DOI:10.3390/data8060104
C. Duan, Min Hu, Hao Zhang
{"title":"ARIMA与LSTM在隧道营运期结构变形预测中的比较","authors":"C. Duan, Min Hu, Hao Zhang","doi":"10.3390/data8060104","DOIUrl":null,"url":null,"abstract":"Accurately predicting the structural deformation trend of tunnels during operation is significant to improve the scientificity of tunnel safety maintenance. With the development of data science, structural deformation prediction methods based on time-series data have attracted attention. Auto Regressive Integrated Moving Average model (ARIMA) is a classical statistical analysis model, which is suitable for processing non-stationary time-series data. Long- and Short-Term Memory (LSTM) is a special cyclic neural network that can learn long-term dependent information in time series. Both are widely used in the field of temporal prediction. In view of the lack of time-series prediction in the tunnel deformation field, the body of this paper uses historical data of the Xinjian Road and the Dalian Road tunnel in Shanghai to propose a new way of modeling based on single points and road sections. ARIMA and LSTM models are applied in comprehensive experiments, and the results show that: (1) Both LSTM and ARIMA models have great performance for settlement and convergence deformation. (2) The overall robustness of ARIMA is better than that of LSTM, and it is more adaptable to the datasets. (3) The model prediction performance is closely related to the data quality. ARIMA has more stable performance under the lack of data volume, while LSTM has better performance with high-quality data and higher upper limit.","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"18 1","pages":"104"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of ARIMA and LSTM in Predicting Structural Deformation of Tunnels during Operation Period\",\"authors\":\"C. Duan, Min Hu, Hao Zhang\",\"doi\":\"10.3390/data8060104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting the structural deformation trend of tunnels during operation is significant to improve the scientificity of tunnel safety maintenance. With the development of data science, structural deformation prediction methods based on time-series data have attracted attention. Auto Regressive Integrated Moving Average model (ARIMA) is a classical statistical analysis model, which is suitable for processing non-stationary time-series data. Long- and Short-Term Memory (LSTM) is a special cyclic neural network that can learn long-term dependent information in time series. Both are widely used in the field of temporal prediction. In view of the lack of time-series prediction in the tunnel deformation field, the body of this paper uses historical data of the Xinjian Road and the Dalian Road tunnel in Shanghai to propose a new way of modeling based on single points and road sections. ARIMA and LSTM models are applied in comprehensive experiments, and the results show that: (1) Both LSTM and ARIMA models have great performance for settlement and convergence deformation. (2) The overall robustness of ARIMA is better than that of LSTM, and it is more adaptable to the datasets. (3) The model prediction performance is closely related to the data quality. ARIMA has more stable performance under the lack of data volume, while LSTM has better performance with high-quality data and higher upper limit.\",\"PeriodicalId\":55580,\"journal\":{\"name\":\"Atomic Data and Nuclear Data Tables\",\"volume\":\"18 1\",\"pages\":\"104\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Data and Nuclear Data Tables\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/data8060104\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Data and Nuclear Data Tables","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/data8060104","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确预测隧道运行过程中的结构变形趋势,对提高隧道安全维护的科学性具有重要意义。随着数据科学的发展,基于时间序列数据的结构变形预测方法受到了人们的关注。自回归积分移动平均模型(ARIMA)是一种经典的统计分析模型,适用于处理非平稳时间序列数据。长短期记忆(LSTM)是一种特殊的循环神经网络,可以学习时间序列中的长期依赖信息。两者都广泛应用于时间预测领域。针对隧道变形场缺乏时间序列预测的问题,本文主体利用上海新建路和大连路隧道的历史数据,提出了一种基于单点和路段的建模新方法。应用ARIMA和LSTM模型进行综合试验,结果表明:(1)LSTM和ARIMA模型均具有较好的沉降和收敛变形性能。(2) ARIMA的整体鲁棒性优于LSTM,对数据集的适应性更强。(3)模型的预测性能与数据质量密切相关。ARIMA在数据量不足的情况下性能更稳定,而LSTM在数据质量高、上限更高的情况下性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of ARIMA and LSTM in Predicting Structural Deformation of Tunnels during Operation Period
Accurately predicting the structural deformation trend of tunnels during operation is significant to improve the scientificity of tunnel safety maintenance. With the development of data science, structural deformation prediction methods based on time-series data have attracted attention. Auto Regressive Integrated Moving Average model (ARIMA) is a classical statistical analysis model, which is suitable for processing non-stationary time-series data. Long- and Short-Term Memory (LSTM) is a special cyclic neural network that can learn long-term dependent information in time series. Both are widely used in the field of temporal prediction. In view of the lack of time-series prediction in the tunnel deformation field, the body of this paper uses historical data of the Xinjian Road and the Dalian Road tunnel in Shanghai to propose a new way of modeling based on single points and road sections. ARIMA and LSTM models are applied in comprehensive experiments, and the results show that: (1) Both LSTM and ARIMA models have great performance for settlement and convergence deformation. (2) The overall robustness of ARIMA is better than that of LSTM, and it is more adaptable to the datasets. (3) The model prediction performance is closely related to the data quality. ARIMA has more stable performance under the lack of data volume, while LSTM has better performance with high-quality data and higher upper limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomic Data and Nuclear Data Tables
Atomic Data and Nuclear Data Tables 物理-物理:核物理
CiteScore
4.50
自引率
11.10%
发文量
27
审稿时长
47 days
期刊介绍: Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive ... click here for full Aims & Scope Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive and comprehensive compilations of experimental and theoretical results are featured.
期刊最新文献
Editorial Board Subshell gaps and onsets of collectivity from proton and neutron pairing gap correlations Matrix elements for spin-orbit couplings in KRb Fine structure transitions with spectral features in Fe V and Fe VI Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1